

ALICE 3 - A new horizon for QCD

Anthony Timmins

RHIC-BES seminar series, June 27th 2023

A next-generation heavy-ion experiment at the LHC

VERSION 2

Hallmarks of Quantum Chromodynamics (QCD)

2008 Nobel Prize

Asymptotic freedom

Vanishing of strong force at high energy

Chiral symmetry breaking Origin of 95% of observable

Confinement

Quarks are never alone

Unlocking the QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = \sum_{q=u,d,s,...} \overline{\psi}_{qi}(x) \left[(i\gamma_{\mu}D^{\mu})_{ij} - m_q \delta_{ij} \right] \Psi_{qj}(x) - \frac{1}{4} F^a_{\mu\nu}(x) F^{\mu\nu a}(x)$$

Can be **approximated in high energy limit** - perturbative QCD \checkmark E.g. Running of strong coupling α_s , cross sections of hard processes

Can be **partially solved in low energy limit** - Lattice QCD ✓ E.g. QCD potential at large distances, mass of hadrons

Untractable for dynamical low energy processes

✓ E.g. Space-time structure of hadron/nuclear structure, hadron formation..

```
Q momentum exchangeHigh energyQ >> \lambda_{QCD} = 200 \text{ MeV}Low energyQ \sim \lambda_{QCD}
```


Emergence of the Quark-Gluon Plasma

Lattice QCD predicts **rapid change in hadronic thermodynamic properties** around T_c=156 MeV of many-body system

Formation of Quark-Gluon Plasma (QGP)

✓ Quarks & gluons no longer confined

Crossover phase transition for matterantimatter symmetric system

 ✓ Accompanied by Chiral Symmetry Restoration

"Standard Model" of Heavy-Ion collisions

Machines that collide heavy-ions

Relativistic Heavy-Ion Collider (RHIC) Brookhaven National Lab (BNL), New York

Large Hadron Collider (LHC) CERN, Geneva, Switzerland

The QCD Phase Diagram

QGP produced at LHC has **highest temperatures** and **largest matter-antimatter symmetry**

✓ Early universe in this state ~10⁻⁶ seconds after big bang

Ongoing dedicated high energy program at RHIC

✓ STAR and new sPHENIX detector

Lower energies at SPS (CERN), RHIC, FAIR, NICA search for **QCD critical point** and **thresholds of QGP** formation

Major QGP discoveries at RHIC (2000s)

QGP discoveries at RHIC and LHC (2010s)

QGP is everywhere?

Charm flow and quenching

Small systems exhibit QGP behavior

Heavy quarks couple with QGP medium

Unique QGP studies at the LHC

arXiv:2303.10090

Charmonium

Regeneration evidence of deconfinement

Full jet reconstruction over widest kinematics

Probes of microscopic QGP structure at various scales

 $p-\Xi^{-}$ A Large Ion Collider Experiment **ALICE** data З Coulomb Coulomb + $p-\Xi^-$ HAL QCD Unravelling few 5-bod Coulomb + b-- Q⁻ HAL QCD elastic OCD elastic + inelastic

a 3.5

1.5

3.5

Charm hadronisation differs at the LHC

Non-universal hadron production

Charmed baryons favored in

proton collisions wrt electron 11

QCD Dead-cone effect Radiation from charm quarks suppressed

Neutron stars go under the LHC microscope

Coulomb + $p - \Xi^-$ HAL QCD

Coulomb + $p-\Omega^-$ HAL QCD elastic

ALICE data

Coulomb

p–Ξ

The ALICE detector (2010s)

Broad momentum acceptance probes all aspects of QGP behaviour

✓ World leading particle identification

Looking ahead at the LHC

Recent upgrades to TPC, ITS and new MFT for Run 3 (and many others). New FoCal and ITS3 in Run 4

- ✓ Precision era for jet, heavy-flavor and electromagnetic probes in large & small systems
- ✓ Deeper explorations of **proton/nuclear structure** and **rare hadron interactions**

ALICE 3 - A next generation heavy-ion detector

Compact all-silicon tracker with high-resolution vertex detector and **extremely low material budget**

Superconducting magnet system up with B=2 T

Particle Identification over large acceptance: muons, electrons, hadrons, photons at $|\eta| < 4$

Fast read-out and online processing.

✓ Starts taking data in 2035

A Large Ion Collider Experiment

ALICE 3 - Expected Luminosities & Performance

Will collect **all ion luminosity provided by LHC** - 100s billions of A-A events!

✓ Factor 3 improvement in pointing resolution compared to ALICE in Run 4

✓ Momentum resolution 1-2% over broad $0.1 < p_T < 100 \text{ GeV/c}$ and $|\eta| < 4$ ranges

ALICE 3 - Vertex detector and inner tracking

Pointing resolution (σ_{DCA}) of tracks to vertex **few** μ m at 1 GeV/c

Achieved by placing retractable vertex detector 5 mm (r_0) away from beam

Vertex detector has 3 tracker layers

✓ Material thickness (X) 0.1% of radiation length (X_0)

✓CMOS Monolithic Active Pixel Sensors (MAPS): curved, thin, large-area, low power

 \checkmark Intrinsic resolution 2.5 μm

ALICE 3 - Outer tracker

60 m² silicon pixel detector

Outer tracker compact and has 8 barrel layers, 9 forward discs $\checkmark R_{out} = 80 \text{ cm}, z_{out} \pm 400 \text{ cm}$ $\checkmark Pixel size ~ 50x50 \ \mu\text{m}^2$ $\checkmark Pixel resolution ~10 \ \mu\text{m}$ $\checkmark X/X_0 ~ 1\%$

Both inner and outer trackers will build on on **experience with ITS2 and ITS3**

ALICE 3 - Particle Identification

e, π, K, p separation with TOF + RICH detectors, with specifications $\sigma_{\text{time}} < 20$ ps, $\sigma_{\theta} < 1.5$ mrad \checkmark Endcap TOF and RICH for full η coverage

Full ALICE 3 detector requirements

Component	Observables	Barrel ($ \eta < 1.75$)	Forward (1.75 < $ \eta $ < 4)	Detectors
Vertexing	(Multi-)charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{\text{DCA}} \approx 10 \mu\text{m}$ at $p_{\text{T}} = 200 \text{MeV}/c, \eta = 0$	Best possible DCA resolution, $\sigma_{\rm DCA} \approx 30 \mu{\rm m}$ at $p_{\rm T} = 200 {\rm MeV}/c, \eta = 3$	retractable Si-pixel tracker: $\sigma_{pos} \approx 2.5 \mu m$, $R_{in} \approx 5 mm$, $X/X_0 \approx 0.1 \%$ for first layer
Tracking	(Multi-)charm baryons, dielectrons, photons	$\sigma_{p_{\mathrm{T}}}/p_{\mathrm{T}}$	Silicon pixel tracker: $\sigma_{\text{pos}} \approx 10 \mu\text{m},$ $R_{\text{out}} \approx 80 \text{cm},$ $L \approx \pm 4 \text{m}$ $X/X_0 \approx 1 \%$ per layer	
Hadron ID	(Multi-)charm baryons	$\pi/K/p$ separati	on up to a few GeV/c	Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Electron ID	Dielectrons, quarkonia, $\chi_{c1}(3872)$	pion rejection by 1000x up to 2–3 GeV/c		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Muon ID	Quarkonia, $\chi_{c1}(3872)$	reconstruction of J/ ψ at rest, i.e. muons from $p_{\rm T} \sim 1.5$ GeV/c a $\eta = 0$	t	steel absorber: $L \approx 70 \mathrm{cm}$ muon detectors
ECal	Photons, jets	large	acceptance	Pb-Sci sampling calorimeter
ECal	Xc	high-resolution segment		PbWO ₄ calorimeter
Soft photon detection	Ultra-soft photons		measurement of photons in $p_{\rm T}$ range 1–50 MeV/c	Forward conversion tracker based on silicon pixel tracker

ALICE 3 Planning

2022: Letter of Intent reviewed by LHCC \rightarrow Very strong support

2023-25: Selection of technologies, small-scale proof of concept prototypes

2026-27: Large-scale engineered prototypes → Technical Design Reports

2028-31: Construction and testing

2032: Contingency

2033-34: Preparation of cavern and installation

2035-41: Run 5 and 6 ALICE 3 physics campaign

Some physics topics explored with ALICE 3

Can we **learn more** about the **QGP**?

Have we **exhausted** our tests of **fundament QCD**?

Is there more can we explore regarding hadronization and hadronic interactions?

Can we contribute to **Beyond Standard Model** searches?

Temperature of the QGP

Vast majority of QGP temperature estimates from models constrained by data

- ✓ Photons direct probe from data, but blue-shifted as QGP is expanding
- ✓ Di-electrons best temperature probe as Lorentz invariant → Very challenging experimentally

Thermal radiation from di-electrons in ALICE 3

Very clean separation of prompt and heavy-flavor electrons

- ✓ Direct QGP temperatures from slope of intermediate di-electron invariant mass spectrum
- ✓ Increasing electron $p_{\rm T}$ probes earlier times → Evolution of QGP temperature

25

Searches for Chiral Symmetry Restoration

Heavy-flavor interactions in QGP

Two-particle D^o correlations probe microscopic QGP charm diffusion directly

Beauty flow provides best constraints on bottom quark diffusion & limits on QGP equilibration

New tests of Lattice QCD during QGP transition

Measured fluctuations of net-quantum numbers explore chiral features of cross-over transition

- ✓ Increased precision of high order net baryon fluctuations and strangeness/charm being explored
- ✓ Become accessible for the first time

Multi-charm baryon production in ALICE 3

Statistical Hadronization → Example of emergent behavior in QCD

- ✓ Almost all light flavor hadrons/nuclei yields described by **thermal model** with few parameters
- ✓ **Open question for charmed hadrons** → unique tests with multi-charmed baryons

Hadronic interactions and exotic nuclei

Two particle **D**⁰ femto correlations can be used to explore formation or **D**⁻ **molecules**

- ✓ Candidate for structure of exotic T_{cc} hadron
- ✓ First observation of a charmed nucleus feasible

Ultra peripheral collisions (UPCs)

UPCs have emerged as an extremely powerful tool to explore cold nuclear matter (and much more)

- ✓ ALICE 3 provides excellent coverage and reconstruction of complex excited p states
- ✓ Hopes to resolve question whether ρ' is one state or two ($2\pi \& 4\pi$ decays)

Ultra soft photon production

Forward Conversion Tracker used to measure ultra-soft photons (few MeV) at forward rapidity ($\eta \sim 4$)

✓ Low's theorem can be used to test **infrared limits of quantum field theories**

Beyond Standard Model searches

Recent AMS discovery of O(10) anti-helium nuclei might be signal of dark matter production

- ✓ Excellent constraints on branching ratio from beauty baryon decay
- ✓ Light by light scattering via UPCs provide competitive limits on axion searches

More physics topics opportunities with ALICE 3

Large η and $p_{\rm T}$ acceptance + excellent PID enable (for example):

- ✓ Heavy-flavor jet correlations or photon-heavy-flavor jet correlations with unprecedented purity at low transverse momentum scales
- ✓ Two-particle correlations with large $\Delta \eta$ to probe early time dynamics and diffusion

Summary

ALICE 3 opens new era of discovery potential and precision in QCD

Designed by heavy-ion physicists for heavy-ion physics

✓ Extremely versatile setup allows for very broad physics program within and beyond QCD

Continues hugely successful endeavor of pushing the **world's most powerful microscopes to new limits**

Quantity	рр	0–0	Ar–Ar	Ca–Ca	Kr–Kr	In–In	Xe–Xe	Pb–Pb
$\sqrt{s_{\rm NN}}$ (TeV)	14.00	7.00	6.30	7.00	6.46	5.97	5.86	5.52
$L_{\rm AA}~({\rm cm}^{-2}{\rm s}^{-1})$	$3.0 imes 10^{32}$	$1.5 imes 10^{30}$	$3.2 imes 10^{29}$	$2.8 imes 10^{29}$	$8.5 imes10^{28}$	$5.0 imes10^{28}$	$3.3 imes10^{28}$	$1.2 imes 10^{28}$
$\langle L_{\rm AA} \rangle ~({\rm cm}^{-2}{\rm s}^{-1})$	$3.0 imes 10^{32}$	$9.5 imes10^{29}$	$2.0 imes 10^{29}$	$1.9 imes10^{29}$	$5.0 imes10^{28}$	$2.3 imes10^{28}$	$1.6 imes10^{28}$	$3.3 imes10^{27}$
\mathscr{L}_{AA}^{month} (nb ⁻¹)	$5.1 imes 10^5$	1.6×10^3	$3.4 imes 10^2$	$3.1 imes 10^2$	$8.4 imes 10^1$	$3.9 imes 10^1$	$2.6 imes 10^1$	5.6
$\mathscr{L}_{NN}^{month} (pb^{-1})$	505	409	550	500	510	512	434	242
R _{max} (kHz)	24 000	2169	821	734	344	260	187	93
μ	1.2	0.21	0.08	0.07	0.03	0.03	0.02	0.01
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ (MB)	7	70	151	152	275	400	434	682
	at $R = 0.5 \mathrm{cm}$							
$R_{\rm hit}~({ m MHz/cm^2})$	94	85	69	62	53	58	46	35
NIEL (1 MeV n_{eq}/cm^2)	$1.8 imes 10^{14}$	$1.0 imes 10^{14}$	$8.6 imes 10^{13}$	$7.9 imes 10^{13}$	$6.0 imes 10^{13}$	$3.3 imes10^{13}$	$4.1 imes 10^{13}$	1.9×10^{13}
TID (Rad)	$5.8 imes 10^6$	$3.2 imes 10^6$	$2.8 imes 10^6$	$2.5 imes 10^6$	$1.9 imes 10^6$	$1.1 imes 10^6$	$1.3 imes 10^6$	$6.1 imes 10^5$
	at $R = 100 \text{cm}$							
$R_{\rm hit}~({\rm kHz/cm^2})$	2.4	2.1	1.7	1.6	1.3	1.0	1.1	0.9
NIEL (1 MeV n_{eq}/cm^2)	$4.9 imes 10^9$	$2.5 imes 10^9$	$2.1 imes 10^9$	$2.0 imes 10^9$	$1.5 imes 10^9$	$8.3 imes10^8$	$1.0 imes 10^9$	$4.7 imes 10^8$
TID (Rad)	$1.4 imes 10^2$	$8.0 imes 10^1$	$6.9 imes 10^1$	$6.3 imes 10^1$	$4.8 imes 10^1$	$2.7 imes 10^1$	$3.3 imes10^1$	$1.5 imes 10^1$

Table 1: Projected LHC performance: For various collision systems, we list the peak luminosity L_{AA} , the average luminosity $\langle L_{AA} \rangle$, the luminosity integrated per month of operation \mathscr{L}_{AA}^{month} , also rescaled to the nucleon–nucleon luminosity \mathscr{L}_{NN}^{month} (multiplying by A^2). Furthermore, we list the maximum interaction rate R_{max} , the minimum bias (MB) charged particle pseudorapidity density $dN/d\eta$, and the interaction probability μ per bunch crossing. For the radii 0.5 cm and 1 m, we also list the particle fluence, the non-ionising energy loss, and the total ionising dose per operational month (assuming a running efficiency of 65%).

Backup - Kinematics and di-electrons

Observables	Kinematic range
Heavy-flavour hadrons	$p_{ m T} ightarrow 0, \ \eta < 4$
Dielectrons	$p_{\rm T} \approx 0.05$ to 3 GeV/c, $M_{\rm ee} \approx 0.05$ to 4 GeV/c ²
Photons	$p_{ m T} pprox 0.1$ to 50 GeV/c, $-2 < \eta < 4$
Quarkonia and exotica	$p_{ m T} ightarrow 0, \ \eta < 1.75$
Ultrasoft photons	$p_{\rm T} \approx 1$ to 50 MeV/c, 3 < η < 5
Nuclei	$p_{ m T} ightarrow 0, \ \eta < 4$

Backup - D meson

Backup - Multi-charm baryons

Particle	Mass (GeV/ c)	c au (µm)	Decay Channel	Branching Ratio (%)
$\overline{\Omega_{cc}^+}$	3.746	50 (assumed)	$\Omega_c^0\!+\!\pi^+$	5.0 (assumed)
Ω_c^0	2.695	80	$\Omega^- + \pi^+$	5.0 (assumed)
Ξ_{cc}^{++}	3.621	76	$\Xi_c^+\!+\!\pi^+$	5.0 (assumed)
Ξ_c^+	2.468	137	$\Xi^-\!+\!2\pi^+$	(2.86 ± 1.27)
Ξ_c^+	2.468	137	$\mathbf{p} + \mathbf{K}^- + \boldsymbol{\pi}^+$	$(6.2\pm3.0)10^{-3}$

Table 6: Particles and decay channels used in the reconstruction of the Ξ_{cc}^{++} and Ω_{cc}^{+} analyses using strangeness tracking. Values from [227]. Where no measurement is available, a branching ratio of 5% is assumed.

Backup - Multi-charm baryons

