

rebilled noriteof noriteelE relucif

Preliminary study of the global collimators arrangement for CEPC

Yuting Wang, Xiaohao Cui, Dou Wang, Haoyu Shi, Guangyi Tang, Yiwei Wang, Haijing Wang, Sha Bai and Yuhui Li

CEPC day, Mar 23, 2023, IHEP

AGENDA

- Introduction to beam abort
- Collimator design
- Summary

Introduction to beam abort

- Machine protection of the CEPC becomes extremely challenging due to unprecedented energies stored in the magnets and circulating beams.
- Machine protection: powering failures of normal conducting magnets, quenches of the superconducting magnets, critical RF failures ...

	Higgs	W	Z	ttbar
Beam Energy [GeV]	120	80	45.5	180
Bunch Population/10 ¹⁰	13	21.4	13.5	20
Number of bunches	446	13104	2162	58
Total Energy [MJ]	1.1	3.7	20	0.33
Beam life time [min]	20	80	55	18

Table 1: Parameters for CEPC beam dump

Introduction to beam abort

- The priority consideration of machine protection:
 - > IP regions, RF region, superconducting magnet...

Beam life time	Scenario	Strategy
20 min (Higgs)	Operating conditions	Collimators must be sufficient and absorb most of the beam
~ms (multi-turns)	Fast beam loss Fast equipment failure	energy Detect the failure or beam loss. Beam dump response as fast as possible Active protectior
~ μs (~ turns)	Several-passages beam loss	Passive protection relies on collimators Passive protection

 Table 2: Beam Losses and Protection Strategies for Different Operation and Failure Scenarios

Collimator design

Constraints on collimator design

 ✓ The half width of a collimator should be small enough to shield the particles that may reach the IR (±10 m from IP).

$$d_c \le r_{IR} \sqrt{\frac{\beta_c}{\beta_{IR}}}$$

 $(s, \beta_x) = (\pm 6.2, 374.601)$ $(s, \beta_y) = (\pm 3.2, 6547.64)$

- \checkmark Limit from the collective beam instabilities
- ✓ Injection requirement

Layout of the global collimators

Collimators locate at the regions with large β functions or large dispersion functions

Fig 1: Layout of the global collimators

Fig 2: β functions along the collider ring

Serious beam loss

• In the condition of critical RF failures, the most serious beam loss occurs.

 $V = V_0 e^{-t/\tau}$

where $V_0 = 4.01 \times 10^7$ is the voltage of the RF cavity , $\tau \approx 773 \, \mu s$.

Single passage at CEPC $\sim 331 \, \mu s$

J.Y Zhai

Simulation

- Simulation tool: SAD
- Beam distribution: Gaussian distribution, start from injection point
- Parameters of collimators:
 - 24 horizontal collimators with radius 3 mm
 - > 12 vertical collimators with radius 3 mm
 - 2 horizontal collimators with radius 18 mm
 - 16 collimators for MDI(Horizontal radius with 4 mm and vertical radius with 3 mm)

Parameters	Values
Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	0.64/1.3
β_x/β_y (m/m)	604.7/202.0
Bunch length (mm)	2.3
Energy spread (%)	0.10

synchrotron radiation

Acceleration by CAVI

CTIME= :	2 <mark>84.30</mark> 8	sec DT	= 284.30	8	sec										
RAD	RFSW	RADCOD	COD	NOINTRA	RING	NOEMIOU	Т	GAUSS	BIPOL	CELL	NOFFSPR	1PT	NODAPER	Т	FIXSEED
REAL	CODPLOT	CALC4D	NOPOL	FLUC	K64	NOFOURI	ER	NOTRACK	SIZ	SIMULAT	E	ABSW	JITTER	TRGAUS	S NOLWAKE
NOTWAKE	BARYCOD	BATCHST	A	CONV	STABLE	NOSPAC	NORADLI	GHT	GEOCAL	NOPHOTO	NS	NOWSPAC	NOSELFC	OD	NOPSPAC
CONVCASI	E	NOPRSVC	ASE	LOSSMAP	ORBITCA	L	RADTAPE	R	NOSORG	INTRES	HALFRES	SUMRES	NODIFFR	ES	
CHARGE=	1	CONVERG	ENCE=NaN	DP=.017	DP0=0	EMITDIV	=1	EMITDIV	B=1	EMITDIV	Q=1	EMITDIV	S=1	EMITX=	5.51E-10
EMITY=1	E-12	GCUT=1E	35	MINCOUP	=.01	MOMENTU	M=1.2E11	PBUNCH=	1E10	NBUNCH=	1	XIX=0	XIY=0	NP= 10	300
MAXITER	ATION=	40													
FIT \$\$\$	\$\$\$	MEA_SUR	E \$\$\$	ORG IP1	DISP_LA	Y IP1 \$\$	\$								

Loss number turn by turn (Only 16 collimators for MDI)

Without additional collimators, beam loss rapidly when the quench of RF occurs. Meanwhile, the a large amount particles are lost near IP and RF region.

Beam loss distribution

Simulation result shows that the beam losses rapidly, even that beam dump system hasn't enough time to response.

Beam loss in condition of critical RF failure

Simulation result suggest: In condition of MDI collimator, particles will loss near IP region and RF region (20000 particles in simulation)

Loss distribution in different collimators

- There are 99.28 % beam loss in all collimators
- Less than 0.1% beam loss in collimators for MDI
- > For now, collimators upstream IP1 absorb most of the beam loss
- Residual beam loss near collimators and upstream IP1

Detailed beam loss in collimators

- Small amount of beam loss in collimators region
- 8 collimators upstream IP contribute less to beam abort

Fig.1 Beam loss distribution in 16 collimators for MDI

Detailed beam loss in collimators

Fig.1 Beam loss distribution in 38 collimators

Beam loss in two directions

Change the radius of the collimators in RF region and injection region

Simulation results indicate:

- > Beam loss in horizontal collimator is more sensitive to the radius of horizontal collimator
- > Small gap of vertical collimator causes more beam loss in vertical direction

Summary

The global collimators arrangement are studied

- All the collimator could protect IP region and RF region in the disaster condition
- For now, collimators near RF and injection region absorb most of the beam loss
- 2 collimators near IP1 and IP3 are expect to absorb the beam in case of beam loss near IP region
- Beam loss in horizontal collimator is more sensitive to the radius of horizontal collimator

Problems:

- Collimators in MINJO.1, RF.1 and MINJI.1 face high pressure due to large amount of beam loss
- Preliminary arrangement of the collimators doesn't match the impedance budget
- More conditions should be included:
- Powering failures of normal conducting magnet
 - Quenches of superconducting magnets
 - Potential damage of equipment
 - Powering failures of kicker

≻

Backup

Introduction to Machine Protection

• Process of active machine protection

CEPC active machine protection system can only work for beam failure of time scale larger than 1 ms

Ref: Y. Nie, TUPVA012, IPAC17, FCCee CDR

	Beam Life-	Beam Power into Envi- ronment		Scenario	Strategy & Remark		
	LHC FCC		FCC	-			
	100 h	1 kW	23 kW	Optimum operating conditions	(Possible) upgrade of the collima- tion system after some years of operating experience		
Operation	10 h	10 kW	236 kW	Acceptable operating conditions (expected during early operation)	Operation acceptable, collimators must absorb large fraction of beam energy		
	12 min	500 kW	11806 KW	Particular operating conditions (dur- ing change of optics, tuning, collima- tor aperture setting, etc)	Operation only possible for short time (~10 seconds), collimators must be very efficient		
Active	1 s	362 MW	8500 MW	Fast beam loss (standard equipment failures)	Detection of failure, beam must be dumped rapidly		
protection	A few ms	$\sim\!\!100~GW$	$\sim \mathrm{TW}$	Very fast beam loss (fast equipment	Detection of failure or beam		
Passive	(multi-turns)			failures, e.g., magnet powering fail- ures or quenches)	losses, beam dump as fast as possible		
operation	1 turn	4 TW	26 TW	Single-passage beam loss (failures at injection or during beam dump, po- tential damage of equipment)	Beam dump not possible, passive protection relies on collimators, absorbers (sacrificial materials)		

Table 1: Beam Losses and Protection Strategies for Different Operation and Failure Scenarios