

Update MDI study of TPC Technology @ Tera-Z on CEPC

Huirong Qi Institute of High Energy Physics, CAS

March 29, 2023, Hengyang

- Motivation of TPC for e+e- colliders
- MDI study of TPC technology
- Toward pixelated readout
- Summary

e⁺e⁻ colliders: Sources of Detector Backgrounds

- Beam-beam interactions (disrupted primary beam, beamstrahlung photons, e+e- and mu+mu- pairs and hadrons from beamstrahlung and gg interactions, and extraction line losses) and radiative Bhabhas
 - $e^+e^- \rightarrow e^+e^-\gamma$ electron-positron scattering
- From the standpoint of integrated background, e+e- circular collider is relatively 'very clean' machines. Average integrated hadronic fluxes produced at the IP are about several orders of magnitude lower compared to LHC. However, the Tera-Z are not so drastically different.

e⁺e⁻ colliders: Sources of Detector Backgrounds

- In general, this source is well understood and under control: it scales with luminosity, one should transport interaction products away from IP and **shield/mask** sensitive detectors, and exploit detector timing
 - Fox example: Make limiting apertures (collimators or shield) as far from IP as possible. Suppress muon flux far from IP by thick magnetic walls.

3.0T for Higgs
High luminosity (10³⁶)
2.0T for Z
Beam crossing angle of 33mrad

TPC technology for the future e+e- colliders

- A TPC is the main tracking detector for **some candidate experiments at future e+e- colliders**
 - ILD at ILC and the baseline detector concept of CEPC
- TPC technology can be of interest for other future colliders (FCC-ee, EIC, KEKb...)

Huirona Oi

Ions in TPC chamber at Tera-Z

- Ions accumulate in TPC volume(**High luminosity at Z pole: 10**³⁶)
 - Primary ionization
 - Ion Back-Flow from amplification ("IBF", dominant effect)
 - TPC ion density and resulting distortions due to hadronic Z decays
 - Ions from ~20k hadronic Zs are present in the TPC at any time

qq_10MeV_A_ALLTPC_secionRzDrift ions/mm^3

Need investigation of the electrons/ions density

- Simulation results based on CEPC's parameters (**High luminosity at Z pole**) •
- CEPC or others detector will meet the **massive electrons/ions in the detector chamber** .
- To investigate and create the stable electrons/ions in the specific area to study the deviation
- Positive ion feedback in Z physics (gain ~2000, IBF ratio ~0.1%) •

Electric field analysis

Cylindrical coordinates

Resnati F. Modelling of dynamic and transient behaviours of gaseous detectors[J]. 2017.

lons density in chamber

z [mm]

unit: m

 $101.6 V_{ion} = 5 (CEPC nominal)$ 1500

1000

Drift length (mm)

=0.325

2000

- MDI study of TPC technology
 - Ions produced by machine-related backgrounds
 - Some references of high luminosity e+e- collider

Upgrade Proposal: TPC for EIC and BELLEII

• EIC: mini-TPC project from Bonning University

00

• BELLEII: Proposal to replace the drift chamber with a tracking TPC

The Electron-Ion Collider

A machine that will unlock the secrets of the strongest force in Nature

Ions produced by machine-related backgrounds

- Simulated these e+ e- pairs in some detector models
 - TPC only in 2T using CEPC size (Haoyu's talk tomorrow)
 - TPC only in 2T using ILD size (Daniel Jeans/KEK)
 - TPC only in 2T using FCCee size (Andrea Ciarma/CERN)
- Pass 100 bunch-crossings of bremsstrahlung pairs through G4-based full detector simulation
 - "uniform" 2T B-field and no anti-DID

What about ions produced by machine-related backgrounds

- Distortions in r-phi due to ions from hadronic Z decays can be up to $O(100) \mu m$, but are stable to $O(1) \mu m$
- BUT, bremsstrahlung gives ~200X more TPC primary ions than hadronic Z decays (preliminary)
- Anyway, forward region plays a very important role room for optimization
 - Some discussion and feedback to Haoyu and Manqi before this meeting

	primary ions / "event"	event rate	primary ions / 0.44 s "TPC frame*"	* maximum ion drift
Z_had ILD_l5_v02 @ 2T	1.27M	54 kHz	30 x10 ⁹	time in TPC = 0.44s
pairs ILD_l5_v02 @ 2T	75 k	33 MHz	1100 x10 ⁹	
pairs ILD TPC only @ 2T	15 k	33 MHz	220 x10 ⁹	
pairs FCCee w/ TPC	0.43 M	33 MHz	6200 x10 ⁹	

Some references of high luminosity e+e- collider

- High luminosity of e+e- collider
 - High luminosity challenging environment for TPC
 - Event overlap due to large drift times (30 µs) expected
 - At KEK, proposal to replace the drift chamber with a tracking TPC
 - FCCee lumi/IP @ Zpole: 182e34 cm⁻² s⁻¹

bunch spacing: 30 ns \rightarrow 33 MHz

sig_Z_{had} @ Zpole ~ 30nb = 3e-32 cm²

int lumi/BX = 182e34 * 30e-9 = 5.46e28 cm⁻²

 $\#Z_{had}/BX = 5.46e28*3e-32 = 1.64e-3$

rate of Z_{had} = 1.64e-3 * 33 MHz = 54 kHz

FCCee parameters of Tera-Z

- Asymmetric e⁺e⁻ collider
 - electrons: 7 GeV
 - positrons: 4 GeV
- B-Factory by creating Υ(4S)
- Design luminosity (at time of thesis)

 $\mathcal{L} = 6.5 \times 10^{35} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$

• Top-up injection scheme SuoerKEKb parameters of High luminosity

	Higgs	w	Z	ttbar
Number of IPs	2			
Circumference [km]	100.0			
SR power per beam [MW]	50			
Half crossing angle at IP [mrad]	16.5			
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	26.6	191.7	0.8

- Touschek Scattering
 - Scattering of two beam particles within one bunch
- Coulomb/Beam-gas Scattering
- Elastic Coulomb scattering of beam particles with residual beam gas
- Bremsstrahlung
 - Inelastic scattering of beam particles with gas nuclei
- Injection Backgrounds not included!
 - Betatron-oscillating injection particles lost in interaction region due to strong magnetic fields of focusing magnets

Process	Rate / MHz	Rate / (60µs) ⁻¹
Brems HER	2.46479	147.89
Brems LER	8.2928	497.57
Coulomb HER	16.335	980.10
Coulomb LER	191.641	11498.46
Touschek HER	0.242353	14.54
Touschek LER	119.409	7164.54

Beam background rejection

- Beam background mainly produces micro-curlers
- Easy to identify
 - Horizontal in z
 - Isolated clump in x-y
- Use pattern recognition algorithm for identification and rejection: **Bkg rejection efficiency > 90%**
- Track finding also need to be optimized

Open question: to be addressed by R&D

- High Luminorsity operation (2×10^{36}) @ Z with 2 T B-Field
- Shield and mask should be optimized in MDI region (only for TPCs)
 - Bremsstrahlung gives ~200X more TPC primary ions than hadronic Z decays ?
 - Use pattern recognition algorithm for identification and rejection ?
 - Backgroud rejection efficiency ?
 - •••

- Pixelated readout TPC is promising, compared to Pad readout
 - Material budget, construction cost, power & cooling, Occupancy is OK
 - Lower Ion backflow at low gain (to be addressed by R&D)
 - Potential for dN/dx, essential for PID
 - ...

• Toward pixelated readout TPC technology

High granularity for improved PID in TPC

- Current full ILD reconstruction: 6mm pads → ~4.8% dE/dx resolution
- Smaller pad size improved momentum resolution via dE/dx and dN/dx
- Smaller pad size improved the voxel occupancy (10⁻⁴ level)
 - Pad size of about 300µm can record ~1 primary cluster along track length at T2K gas
 - High **readout granularity** VS the primary cluster size optimization

Pad toward pixel pad

Simulation of the primary cluster

CEPC TPC detector prototyping roadmap at IHEP

- From TPC module to TPC prototype R&D for beam test
 - Low power consumption FEE ASIC (reach <5mW/ch including ADC)
- Achievement by far:
 - Supression ions hybrid GEM+Micromegas module
 - IBF×Gain ~1 at Gain=2000 validation with GEM/MM readout
 - Spatial resolution of $\sigma_{r_0} \leq 100 \,\mu m$ by TPC prototype
 - dE/dx for PID: <4% (as expected for CEPC baseline detector concept)

Low power consumption readout

Pixelated TPC technology – Large scale readout from LCTPC

- Pixelated TPC prototype with GridPixes:
 - 8-QUAD module (2x4 quads) with field cage
 - → 8-Quad GridPixes covered **an active area of 39.6 × 28.4 cm**²
 - ~100-120 chips/module 240 module/endcap (full size 10m²)
 → 50000-60000 GridPixes
- During the test beam ~10⁶ events were successfully collected, all results showed that a pixel TPC is realistic.

DESY testbeam in June 2021

arrival time (ns

Current R&D effort: Pixelated TPC R&D from CEPC

- **R&D on Macro-Pixel TPC readout for CEPC**
 - Macro-Pixel TPC ASIC chip was started to developed in this year and **1st prototype wafer has done in last year**.
 - The first version ROIC has been received and under testing. Interposer PCB
 - The **TOA and TOT** can be selected as the initiation function in the ASIC chip.
 - $1 \text{mm} \times 6 \text{mm} \rightarrow 500 \mu \text{m} \times 500 \mu \text{m}$ pixel readout
 - Higher precision and higher rate (MHz/cm²)
 - Gain of the amplification: >40mV/fC
 - Channels: 128
 - Time resolution: **14bit** (5ns bin)
 - Time discriminator: TOA (Time of Arrival)
 - **Power consumption:** <1mW/pixel (1st prototype)
 - $\sim 400 \text{mW/cm}^2$
 - 100mW/cm² (Goal and final design)
 - Technology: 180nm CMOS -> 60nm CMOS
 - High metal coverage: 4-side bootable

1st readout PCB board and the ASIC layout

- In CEPC TPC study group, the updated R&D of MDI for TPC technology focused on the ions in the chamber, the forward region will be a very important role room for optimization at the high luminosity e+e- colliders. The shield/mask should be very carefully to consider in MDI region for all of inner detectors.
- TPC detector module and prototype using the pad with integrated 266nm UV laser tracks have been developed for the future e+e- colliders. Updated R&D will be from pad size readout toward pixel pad size readout, and the new readout chip has been developed and commissioned.
- Synergies with CEPC/FCCee/EIC/LCTPC allow us to continue R&D and ongoing, we learn from all of their experiences.

Many thanks!