

Institute of High Energy Physics, Chinese Academy of Sciences

R&D Progress and Requirements on CEPC Crystal ECAL

Baohua Qi On behalf of CEPC Calorimeter Working Group

The 2022 CEPC MDI Workshop at Hengyang

March 30 – April 1, 2023

Motivations: new detector for CEPC

- CEPC: future lepton collider
	- Higgs/Z/W bosons, BSM searches, etc.
	- Precision jet measurement
	- PFA-oriented high-granularity calorimeter
- PFA-oriented detector "CEPC 4th concept": Drift Chamber + ECAL + HCAL
	- Crystal ECAL: intrinsic energy resolution: \sim 3%/ $\sqrt{E} \oplus \sim$ 1%
	- Scintillating glass HCAL: high density for better boson mass resolution

High granularity ECAL

CALICE Collaboration Meeting at University of Göttingen

CEPC 4th detector concept: crystal ECAL

High granularity crystal ECAL performance with Arbor-PFA

- Simulation geometry: ideal 1 $cm³$ crystal cubes
- For reconstruction of jets: separation of close-by particles

- EM shower: good separation power, similar to SiW ECAL under a high energy threshold
- Hadronic shower: challenges on clustering and matching clusters to tracks
- Arbor-PFA is not fully optimized for crystal option, still room for improvement

CEPC Software v0.1.1

 $P_A \vee P_B$

PFA performance: Higgs benchmark

• Physics performance: Boson mass resolution (BMR)

Baohua Qi (IHEP), Zhiyu Zhao (SJTU)

CEPC Software v0.1.1

• Studied with 1 cm^3 crystal cubes

2023/03/31 5 The 2022 CEPC MDI Workshop

Reconstruction algorithm dedicated to long crystal bar ECAL

• Clustering algorithm for long bar crystal ECAL **EXAL** Weizheng Song (IHEP)

• Compare to MC truth: generally consistent

- Consistency between individual clusters and single particles
- Inputs for further particle recognition

Reconstruction algorithm dedicated to long crystal bar ECAL

• Particle reconstruction for long bar crystal ECAL Yang Zhang (IHEP)

• Tracking matching algorithm for crystal ECAL

Two tracks due to ECAL tower boundary

- Reconstruction flow has already been built
- Ongoing work on hadron…

Reconstruction algorithm dedicated to long crystal bar ECAL

- Occupancy of ECAL towers: challenges on reconstruction and Management of Tang Zhang (IHEP)
- Hottest tower: the tower with the largest number of particles hitting on
- 4 jets event: $e^+e^- \rightarrow ZH$, $Z \rightarrow q\bar{q}$, $H \rightarrow gg$

- Most towers have 0~1 particle hitting on
- Occupancy of these towers can be ignored

Key issues

- Always have multiple particles hitting on one tower
- Need to deal with the occupancy by algorithm improvement
- Potential performance degradation needs to be understood

Hardware activities of crystal ECAL

- Study on requirements of crystal-SiPM units
	- Key parameters: MIP light yield, dynamic range, timing resolution, radiation hardness,…
- Preliminary barrel ECAL geometry design
- Development of small-scale crystal modules
	- System-level experiences (via development and beam test)

EM energy resolution: light yield requirements Geant4 Simulation (v11.0)

- Light yields: number of detected photons per MIP
- Energy resolution: need stochastic term < 3% Simulation: $40 \times 40 \times 28$

Light Yield vs Stochastic Term

supercell, BGO long bars, gaps, 1~40 GeV electrons Digitization: photon statistics, gain uncertainty, ADC error,…

- Good resolution requires
	- Moderately high light yield \rightarrow dynamic range
	- Low energy threshold \rightarrow noise level

Key requirements

- Light yield required for one crystal: ~200 p.e./MIP (1 cm BGO)
	- **Get** $< 1.5\% / \sqrt{E}$ **energy resolution**
	- Requirement for one SiPM: ~100 p.e./MIP

Cosmic-ray test: MIP response of BGO crystal

- Measurement of crystal-SiPM units
	- 16 and 40 cm BGO crystals, double-sided readout

- MIP light yield higher than the requirement
	- Smaller SiPMs with high pixel density: 3×3 mm², 6 μ m/10 μ m
	- "Tune" BGO light yield as well as decay time (with SIC-CAS)

Status of new BGO crystal development at SIC

Radioluminescence spectra of as-prepared BGO: RE powders

The relative luminescence intensity of BGO powders with 0-5% RE doping concentration

Achieved so far…

Light yield reduce $^{\sim}65\%$ and decay time reduce $^{\sim}34\%$

Junfeng Chen (SIC-CAS)

A fast combinatorial design and screening method to optimize the doping concentration

Characterization of large dynamic range SiPMs

Laser test stand $120⁵$ $100⁵$

Baohua Qi (IHEP), Zhiyu Zhao (SJTU)

Key issue

• Limitation from dynamic range

Latest progress on time resolution study

- Cosmic-ray events with 400 mm long crystal bar
- Fit the leading edge of SiPM signals
-

Baohua Qi (IHEP), Zhiyu Zhao (SJTU)

TimeResolution_VaryGunPos

Expected time resolution in simulation: ~400 ps

Requirements

- Time resolution: ~400 ps Limitations:
- Electronics in tests, scintillation properties of BGO crystal, light transmission

Studies of radiation damage

- SiPM damage: DCR, signal amplitude,…
- Crystal damage: light yield, uniformity,…

• For DCR of SiPM, method to calculate equivalent noise energy (ENE)

and convert it into energy according to light yield

• Count the number of photons from dark noise within one signal,

General geometry design for crystal ECAL

Quan Ji, Chang Shu (IHEP) • CEPC crystal ECAL barrel geometry design Finer segmentation of towers • Decrease outer radius for lower cost of the outer detectors 4 layers per "step" 28 towers per ring, 17 rings along beam direction with the same • ~25 radiation length: 28 layers transverse size**Barrel ECAL: cylindrical structure Octagonal** detector **280mm Cylindrical** crystal ECAL Key questions **28 towers per ring** Space for electronics and cooling **17 rings along z Assembly**

Detailed assembly of PCB and crytal

• Mechanical assembly: crystals will be supported by curb pins through hole on PCB

Quan Ji, Chang Shu (IHEP)

• Total mass of the crystals in one tower: ~380 kg

support structures

- 12 \times 12 \times 12 cm³ BGO modules development
- Motivations: address critical issues at system level
- Beam test studies
	- Energy resolution, shower profiles
	- Validation of simulation and digitization tool
	- Application of the new reconstruction software
- SiPM option: NDL/HPK, $6/10$ µm pixel size, 3×3 mm² sensitive area
- Electronics option: commercial products available, e.g. Citiroc-1A
- Crystal option: BGO crystal $(12 \times 2 \times 2 \text{ cm}^3)$ from SIC-CAS
- Beam test plan: 2 modules serial arrangement

Crystal module

- 36 crystals readout from two sides
- 18 channels per side, 72 channels per module

- Performance check: Geant4 simulation with 1~10 GeV electron
- Saturation considering S14160-3010PS SiPM and Citiroc-1A chip
- 5% (σ = 0.1%) transmittance neutral density filter is used for light attenuation

- SiPM non-linearity should be further calibrated
- Saturation of electronics can be avoided via high dynamic range ASIC
- 5% neutral density filter can mitigate the saturation effect but will introduce additional uncertainty

Digitization: photon statistics, SiPM gain error, ADC error, MIP threshold

• Batch test of SIC-CAS BGO crystal bars

Response uniformity along bar

- 40 crystals with ESR and Al foil wrapping
- Scan with Cs-137 radioactive source

• Generally good uniformity along a single bar

Zhikai Chen (IHEP/USC)

- Batch test of SIC-CAS BGO crystal bars
	- 40 crystals with ESR and Al foil wrapping
	- Scan with Cs-137 radioactive source

- Tested point: crystal center
- Response varies among bars: coupling? wrapping?

- Uniformity = (Max Min)/Mean
- Generally uniformity of single bars at 1% level

- SiPM calibration with optical fiber and laser diode
	- Motivation: online single photon calibration for a 72-channel module
	- Collimated laser diode for enough light intensity
	- Light will be guided to SiPMs (NDL EQR15 series) by plastic optical fiber

- Laser should be collimated to fiber ends
- Fibers should be bonded for better light acceptance

Zhiyu Zhao (SJTU)

- SiPM calibration with optical fiber and laser diode
	- Motivation: online single photon calibration for a 72-channel module
	- Collimated laser diode for enough light intensity
	- Light will be guided by plastic optical fiber to SiPMs (NDL EQR15 series)

- Both SiPMs shows clear photon peaks
- Good consistency between the arbitral selected 2 fiber channels

Zhiyu Zhao (SJTU)

• Mechanical structure and module assembly

- Difficulties on mechanical design
	- Readout from 4 sides, PCB is non-load-bearing and should be decoupled
	- Module assembly is hard since crystals should be placed orthogonally

• PCB layout

Crystal ECAL: specifications

Challenges/issues…

- Crystal size optimization, as well as realistic ECAL geometry design
- Sophisticated software for long bar crystal ECAL
- New BGO crystal with lower light output and faster decay time (collaboration with SIC-CAS)
- Limitation from SiPM dynamic range
- Radiation damage

Small-scale crystal module design: impact of gaps

- Gap material in $40 \times 40 \times 28$ supercell: ESR film, Al foil, Air
- Density set to 2 $g/cm³$

- Impact of gaps is significant
- Gaps for $12 \times 2 \times 2$ cm³ cm crystal: ~0.4 mm
- Control of gaps will be harder with longer crystals: key issue

Small-scale crystal module design: impact of module size

• 40 \times 40 \times 28 supercell: change the length of the crystal bar from 400 mm to 120 mm

Energy Resolution

- For EM showers, 12 cm size is enough to contain most of the energy when particles hit on the center of the module
- Degradation of energy resolution: ~0.1% level

SiPM response non-linearity study

• PDE filter: the random number is smaller than PDE

• Crosstalk filter: random number smaller than crosstalk probability && at least one adjacent pixel is not in fired

First order: \bullet

$$
N_{\text{fire}}^{\text{LO}'} = N_{\text{pix}}^{\text{eff}} \left(1 - e^{-\epsilon N_{\text{in}} / N_{\text{pix}}^{\text{eff}}} \right).
$$

One pixel receive more than one photon \bullet

$$
N_{\rm fire}^{\rm NLO} \quad = \quad N_{\rm fire}^{\rm LO} + \alpha N_{\rm R}.
$$

Charge distribution of a photon: considering pixel recovery and scintillation decay \bullet

$$
N_{\rm fire}^{\rm NLO'}=N_{\rm fire}^{\rm NLO}\frac{\beta+1}{\beta+\epsilon N_{\rm in}/{\rm LO}}.
$$

Crosstalk and afterpulse \bullet

$$
N_{\text{fire}}^{\text{NLO}'_{\text{C-A}}} = N_{\text{fire}}^{\text{NLO}'} \Big(1 + P_{\text{cross}} \cdot e^{-\epsilon N_{\text{in}}/N_{\text{pix}}} \Big) \cdot (1 + P_{\text{after}}),
$$

[ICASiPM_Krause_final.pdf \(gsi.de\)](https://indico.gsi.de/event/6990/contributions/31516/attachments/22653/28414/ICASiPM_Krause_final.pdf)

[\[1510.01102\] Describing the response of saturated SiPMs](https://arxiv.org/abs/1510.01102) (arxiv.org)

