The R&D of the New Glass Scintillator with high density and high light yield

Sen QIAN

qians@ihep.ac.cn; On Behalf of the GS R&D Group

The Institute of High Energy Physics, CAS

2023. Mar. 31th CEPC MDI Workshop 南华大学

Outline

I. The Motivation and the Design

- 2. The Test Facilities for GS
- 3. The Progress of the GS
- 4. Optical Simulation for GS detector
- 5. Summary and Next Plan

1.1. The GS-HCAL of CEPC

Future electron-position colliders (e.g. CEPC)

- Main physical goals: precision measurements of the Higgs and Z/W bosons
- Challenge: unprecedented jet energy resolution $\sim 30\% / \sqrt{E(GeV)}$

CEPC detector: highly granular calorimeter + tracker

- Boson Mass Resolution (BMR) ~4% has been realized in this baseline design
- Further performance goal: BMR $4\% \rightarrow 3\%$
- Dominant factors in BMR: charged hadron fragments & HCAL resolution

New Option: Glass Scintillator HCAL (GS-HCAL)

- Higher density provides higher energy sampling fraction
- Doping with neutron-sensitive elements: improve hadronic response (Gd)
- More compact HCAL layout (given 4~5 nuclear interaction lengths in depth)

1.2 The Simulation for GS-HCAL

How to achieve the optimized energy resolution (Boson Mass Resolution, BMR)

Impact of Scintillator type

Plastic Scintillator vs Glass Scintillator: GS has better hadronic energy resolution in low energy region (<30GeV)

Impact of Light Yield

Impact of Density

A light yield of 100 p.e./MIP or 1000p.e./MeV seems to be good enough for better BMR;

Glass density ~ 6 g/cm3 is a relatively reasonable target, which can guarantee a good BMR (~3.3%) and feasibility in R&D

1.3 Target of Glass Scintillator

Key parameters	Value	Remarks		
Tile size	$\sim 30 \times 30 \text{ mm}^2$	Reference CALICE-AHCAL, granularity, number of channels		
Tile thickness	~10 mm	Energy resolution, Uniformity and MIP response		
> Density	5-7 g/cm ³	More compact HCAL structure with higher density		
Intrinsic light yield	1000-2000 ph/MeV	Ligher intringia IV can telerate lower transmittance		
Transmittance	~75%	Figher munisic L'i can tolerate lower transmittance		
MIP light yield	~150 p.e./MIP	Needs further optimizations: e.g. SiPM-glass coupling		
Energy threshold	~0.1 MIP	Higher light yield would help to achieve a lower threshold		
Scintillation decay time	~100 ns	Mitigation pile-up effects at CEPC Z-pole (91 GeV)		
Emission spectrum	Typically 350-600 nm	To match SiPM PDE and transmittance spectra		

1.4. The Design of the Glass Scintillator

High Light Yield: Lanthanide for the Luminescence Center: Cerium (Ce);
 High Density and Low radioactivity background: Gadolinium (Gd);

I. The Motivation and the Design

2. The Test Facilities for GS

- 3. The Progress of the GS
- 4. Optical Simulation for GS detector
- 5. Summary and Next Plan

2.1 The GS R&D Collaboration Group

- 中國科学院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences
 - Jinggangshan University 井冈山大学
- Beijing Glass Research Institute 北京玻璃研究院

China Building Materials Academy 中国建筑材料研究院

China Jiliang University 中国计量大学

Harbin Engineering University 哈尔滨工程大学

Sichuan University 四川大学

闪烁玻璃合作组 Glass Scintillator Collaboration

- -- The Glass Scintillator Collaboration Group established in Oct.2021;
- -- The Experts of the GS in the University, Institute and Industry are still welcomed to join us (qians@ihep.ac.cn).

8

2.2 Test Facilities -- (1) the PMT Lab in IHEP

The PMTs information could be see the talk in WG7 < The R&D of the MCP based PMTs for High Energy Physics Detectors>

2.3 Energy Spectra--Light Yield

Light Yield @gamma-ray VS @X-ray

X-Ray Energy Spectra

¹³⁷Cs γ-Ray Energy Spectra

- Under X-ray, the photon number of the GC detected by SiPM is about 32% of BGO crystal;
- Under ¹³⁷Cs, the photon number of the GC detected is about **59%** of BGO crystal;
- Therefore, the relative light yield of glass scintillator under X rays is not equal to γ rays.

2.4 Effect of integral time on glass scintillator

Integral time (ns)	LY (ph/MeV)	ER (%)	Decay time (ns)
1000	/	1	619.9
2000	708	44.2	279.4 (0.3%), 3594.7
4000	1126	26.4	198.7 (0.9%), 1708.0
6000	1204	28.6	165.8 (0.6%), 1652.2
8000	1247	28.8	152.2 (0.5%), 1653.5
10000	1278	28.6	167.5 (0.6%), 1649.0
12000	1296	30.0	166.0 (1.0%), 1642.4

- According to RT+FT, the integral time should be set to more than 4000 ns.
- Taking 0.5 mol% Ce³⁺-doped glass as an example, the calculated light yield increases with the increase of the integral time due to large slow component decay time, and the longer the integral time, the worse the energy resolution.
- Therefore, the appropriate integral time should be set up according to different decay of the glasses.

1000

1500

2500

Ftime/ns

1000

500

2.5 The Light Yield--Cosmic Ray VS Gamma Ray

Considering the density and thickness of the glasses, the MIP response by the cosmic ray is consistent with the light yield of the glass scintillator by gamma ray.

	MIP (p.e.)	LY (ph/MeV)	Thicknes (mm)	Density (g/cm ³)	mip/(Thi*Den)	LY/MIP
#1	143	1117	2.6	5.4	10.2	110
#3 (GC)	203	3455	2	3.3	30.6	113

I. The Motivation and the Design

- 2. The Test Facilities for GS
- 3. The Progress of the GS
- 4. Optical Simulation for GS detector
- 5. Summary and Next Plan

3.0 The GS Samples produced in one year (>200)

3.1 Borosilicate Glass (Gd-Al-B-Si-Ce³⁺) --GS1

(2022.05)Opt. Mater. 2022(130): 112585

3.2 Borate glass (Gd-Ga-B-Ce³⁺) --GS2

Density=5.9 g/cm³ LY=550 ph/MeV ER=None Decay=148 ns (16%), 1076 ns $\frac{10^{9}}{10^{9}}$

2022.07

New glass system

Large size 20mm*20mm*12mm

2022.09

2022.10

Large sizeFast decay

3.3 The Large size glass

- Size=30*30*10 mm³
- Density= 5.2 g/cm^3
- LY~600 ph/MeV

■ ER=None

- Size=28*28*10 mm³
 Density=5.2 g/cm³
 LY=613 ph/MeV
- ER=47.9%

2023.03

3.4 Glass Ceramic (Gd-Y-K-Si-Ce³⁺) --GC

About Glass Ceramic could be seen in these Ref. (2021.07) Opt. Lett. (2021), 46(14), 3448; (2021.11) J. Mater. Chem. C, 2021, 9, 17504; (2022.11) J. Eur. Ceram. Soc., 2022;

- Density~ 3.3 g/cm^3
- LY=519 ph/MeV
- ER=None
- Decay=240 ns (47%), 1752 ns

(2022.10) J. Mater. Chem. C, 2021, 9, 17504

I. The Motivation and the Design

- 2. The Test Facilities for GS
- 3. The Progress of the GS
- 4. Optical Simulation for GS detector
- 5. Summary and Next Plan

4.0 Simulation setting (--> next to G4)

4.1 Module (1) Coupling mode of GS and SiPM

4.1 Module (2) The Reflection Film

Aluminum / ESR film

(sp

(specular reflection)

ref.ratio = 80% / 99%

Teflon/ (diffuse reflection) ref.ratio =98%

4.2 The Results

	GS=40mm*40mm SIPM= 6mm*6mm	GS=40mm*40mm SIPM= 3mm*3mm X 4	GS=20mm*20mm X 4 SIPM= 3mm*3mm X 4
Direct detection			
Al	32777ph 3.63ns	33310ph 3.65ns	30764ph 3.69ns
Teflon	6634ph 0.55	hary Results!	7036ph 0.64ns
Teflon+Al	9364pl	9637ph 0.78ns	8740ph 0.66ns

Outline

I. The Motivation and the Design

2. The Test Facilities for GS

3. The Progress of the GS

4. Optical Simulation for GS detector

5. Summary and Next Plan

5.1 Summary

Glass scintillator of good energy resolution, fast decay, high density and light yield

- 6.0 g/cm³ & 1072 ph/MeV with 24.4% @662keV &
 460 ns —Gd-Al-B-Si-Ce³⁺ glass
 - Ultra-high density **Tellurite Glass**—6.6 g/cm³
 - High light yield Glass Ceramic—3400 ph/MeV
 - Fast scintillating Decay Time—100 ns
 - Large size Glass—42mm*51mm*10mm

5.2 The Scintillator data

Туру	Composition	Density (g/cm³)	Light yield (ph/MeV)	Decay time (ns)	Emission peak(nm)	Price/1 c.c (RMB)
Glass Scintillator in Paper	Ce-doped high Gadolinium glass ^[1]	4.37	3460	522	431	~10
	Ce-doped fluoride hafnium glass ^[2]	6.0	2400	23.4	348	150
Plastic Scintillator	BC408 ^[3]	~1.0	5120	2.1	425	60
	BC418 ^[3]	~1.0	5360	1.4	391	80
Crystal	GAGG:Ce ^[4]	6.6	50000	50	560	2400
	LYSO:Ce ^[5]	7.1	30000	40	420	1200
	BGO ^[6]	7.3	8000	300	480	800
Glass Scintillator for CEPC (preliminaryl target)	?	>7	>1000	< 100	350-500	~1
Stuaus of Glass Scintillator	?	>6	>1000	< 200	350-500	~?

[1] Struebing, C. Journal of the American Ceramic Society, 101(3). [2] Zou, W. Journal of Non-Crystalline Solids, 184(1), 84-92. [3] Plastic Scintillators | Saint-Gobain Crystals. [4] Zhu, Y. Qian, S. Optical Materials, 105, 109964. [5] Ioannis, G. Nuclear Instruments & Methods in Physics Research. [6] Akapong Phunpueok, et al. Applied Mechanics and Materials, 2020,901:89-94.

5.3 Next plan

Gd-(Ba/Al)-B-Si -Ce³⁺ glass will be the focus of future research.

- The glass scintillators were prepared repeatedly to ensure its performance stability;
- The properties of the glasses will be further improved through raw material purification;
- To reduce the scintillation decay time of the glasses (<100 ns);
- To produce the large size and mass preparation samples(4cm*4cm);
- Test the radiation resistance and mechanical properties of the glasses (MDI);
- Explore the structural properties of the glasses.

See the unseen change the unchanged

N2+H2-714H3

Clatooloj

THANKS

0101110001

The Innovation

100 clement