The Development of High Granularity Calorimeter

Yunlong Zhang

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

On behalf of CEPC Calorimeter working group

Outline

Motivation

Calorimeter prototypes introduction

Beam test at CERN

> Summary

Motivation

Circular Electron Positron Collider (CEPC)

 $E_{cm} \approx 240 GeV$, luminosity $\sim 2 \times 10^{34} cm^{-2} s^{-1}$ can also rum at the Z-pole Precision measurement of the Higgs boson (and the Z boson)

$e^+e^- \rightarrow ZH$

Requirements of CEPC Calorimeter

• ILD-like detector with additional considerations.

Challenges:

- > Momentum: $\sigma_{1/p} < 5 \times 10^{-5} \text{ GeV}^{-1}$
- > Impact parameter: $\sigma_{r\phi} = 5 \oplus 10 / (p \cdot \sin^2 \theta) \mu m$

> Jet energy:

$$\frac{\sigma_E}{E} \approx 3 - 4\%$$

- The Particle Flow Algorithm (PFA) calorimeter concept was proposed
 - High granularity
 - Good track finding
 - Good energy resolution

Sampling Calorimeter

Calo	Sampling No.	Sensitive detector	Absorber	Granulari ty	Electroni cs	Absorb length	Energy Resolution	weight
Sci-W ECAL	32	PSD+SiPM	W-Cu	5mm×5 mm	SP-2E	22 X ₀	16%@ 1 GeV	0.3 T
AHCAL	40	PSD+SiPM	Fe	40mm×4 0mm	SP-2E	4.6 NIL	60%@ 1 GeV	5.0 T

Elements of ECAL

Scintillator (5mm*45mm*2mm)

SiPM (1mm * 1mm, 10k pixels)

- Dynamic range: ~100fC~200pC
- channels: 36
- Dead time: 2ms
- Polar: positive
- power: 8mW/channel

Single Layer assembly

Visual inspection

cleaning

assembling

The single layer prototype was assembled in Shanghai Institute of Ceramic (SIC)

2023/3/31

EBU

Super-layer assembly

THE OWNER WHEN THE

Sci-W ECAL

- Sci-W ECAL
 - 32 layers, 16 super-layes
 - 210 channels of each layer, total channels:6720
 - Sensitive area: 22cm×22cm

Cosmic Ray test

- Long term cosmic ray test: 90 DAYs
 - ScECAL has been rotated by 90 degree
 - Coincidence trigger of Layer1 & Layer29
 - Event rate : ~ 16 per minute
 - ~1.5 million cosmic ray events collected
- Purpose
 - Function verification (stability, temperature correction, etc)
 - EBU efficiency and Position resolution
 - Cell-to-cell MIP calibration

pedestal

- The noise of each cell in each channel tested by random trigger from DIF boards
 - The pedestal position of different chips is a little different
 - The pedestal position of the same chip is more uniform
 - The pedestal position is very stable with the change of time

Beam Test in IHEP

- ➤ 2020, E3 beam line
- 2.5 GeV e- interacted with Be target
- Three momentums were selected in the beam
 - 500 MeV/c, 800 MeV/c, 1000MeV/c

AHCAL

Scintillator

Scintillator Test

HBU

Electronics Test 2023/3/31

assemble the scintillator on HBUs

- Fix the scintillators on the HBU with glue
- press them with cover plate to make solidify

Scintillators on HBU

finish

2023/3/31

AHCAL

- Sensitive Layer
 - The single layer sensitive layer is encapsulated in a "box"
 - The "box" material is the same as the absorber (iron), and its own thickness is a part of the absorber

V2

AHCAL Progress I

- HBU assembled to cassette
 - The assembly of HBU cassettes have a unified process flow

AHCAL

The AHCAL structure

- It has 39 iron absorbers,
 16mm
- The gap between two neighbor iron plates is 14.5 mm, and the HBU cassette could be inserted in it

17

AHCAL

- The AHCAL was assembled this summer
 - 40 sensitive layers, and sensitive area is ~ 72 cm x 72 cm
 Each layer has 324 sensitive cells
 - ♦ Total number is 12960

2023/3/31

Supporting Table

The supporting table for calorimeter beam testing

- The table can support ECAL and AHCAL at the same time
- The horizontal movement distance is ± 20 cm, and the up and down movement distance is ± 15 cm

AHCAL on this table

Beam test

Two weeks of high-energy particle beam test at H8 of SPS

- > The H8 beam line is a high-energy, high-resolution secondary beam line.
- > The maximum momentum that can be transported in the experiments is 400 GeV/c protons
- > or secondary mixed hadron beams within the range 10-360 GeV/c.
- > the electron beams with variable purity (10 99 %) are also possible. The maximum $\Delta p/p$ acceptance of the line is 1.5%.

					SPS: Oo	tober 2	2022				CERN
chedule iss	sue date: 30-May	y-2022	Versio	on: 1.10							'YA
		Mon Tue W 26 27 2 Sep Sep Se	YedThuFriSatSun18293012epSepSepOctOct	Mon Tue W 3 4 4 Oct Oct O	/edThuFriSatSun56789OctOctOctOctOct	Mon Tue Wed Thu 10 11 12 13 Oct Oct Oct Oct	Fri Sat Sun I 14 15 16 Oct Oct Oct	Mon Tue W 17 18 1 Oct Oct O	Ved Thu Fri Sat Sun 19 20 21 22 23 Oct Oct Oct Oct Oct	Mon Tue V 24 25 Oct Oct O	VedThuFriSatSun2627282930OctOctOctOctOct
١	Week		39		40	41			42		43
/lachine	e	8h	185	ŝh	185			8h	18h		
т	2 - H2	Calice Sdhcal	A. Ariga	NA65	CMS H D. Lazic PPE172	IGCAL Y. Itow PPE172	1	LHCf	H. Schindler		LHCb ECAL
т	⁻ 2 - H4	V. Gninen	ko 2E144	NA64e	EB. Holzer		Place-	holder	M.R. Jäkel, E. Oliv PPE134, PPE154	veri	GIF RD51
ea T4	4 - H6 main user	CMS PIXELS	ATLAS A. Rummler PPE146	ITK PIXEL	ATLA A. Rummler PPE156	S AFP Dannh PPE156	MONO eim Dao) LITH	E. Figueras	RD50	NA62 H. Danielsson PPE136
rth Ar	4 - H6 parallel use	EP hybrid	ATLAS AFI A. Rummler PPE146	Р ВСМ	ATLAS A. Rummler PPE146	ITK PIXEL A V. Dao PPE146	TLAS MALTA D. Dannheim , PPE156	EP PIXEL	NA62 ATLAS H. Danielesson A. F H. Danielesson A. F	HGTD	EP hybrid ATLAS HGTD E. Gkougkousis PPE198, PPE140
žт	⁻ 4 - H8	UA9 Totem	W. Scandale PPE128	UA9	H. Schindler, N. Ner PPE128, PPE138, PPE	i 158, PPE168	CMS MTD (S 2DOM)	J. Liu, E. Scompar 158 or 168, PPE138	Calice s	cw ecal NA60+

Install the detectors in beam area

Install the detectors in beam area

Beam Test

- The calorimeters has been calibrated in H8
 - ◆ 10 120 GeV/c pions
 - ◆ 10 40 GeV/c positrons

Beam test

- We tested calorimeter with mu+, pi+, positron
 - Muon+
 - 160 GeV/c, 108 GeV/c
 - Pion+
 - 10 120 GeV/c, one million per point
 - Positron
 - 10 120 GeV/c, 100 thousand per energy point

AHCAL test

- First of all, we tested AHCAL independently
- The internal temperature of AHCAL rose slowly in the first three days of the test and then tended to be stable

- The energy reference should be taken from MIPs which could be calibrated using high energy muons
- Muon halo mode with 160/108 GeV/c
- The halo size is about 20 cm x20 cm, and we changed the supporting table to test different area

- Pedestal represents the offset and noise level of the readout channel
- We can easily obtain from the muon beam data to select the unit that have not been hit

27

- The ratio of High/low gain is another important parameter for energy reconstruction
- The relationship could be get from the muon test data
- Most of them are around 30

- The MIPs value is the energy reconstruction reference
- The relationship could be get from the muon test data
- Most of them are around 300

MIP Peak of Each Channel in Layer0

AHCAL Test with pion+

- The energy response of AHCAL was studied by pions
- The calorimeter could cover the whole shower

50 GeV

2023/3/31

30

AHCAL Test with pion+

- The Cherenkov detectors in the beam were also used to do the PID.
 - One is low pressure
 - The other is high pressure

Combined Test

Sci-W ECAL Test with Mu+

- The ECAL also tested using muons with 108 GeV/c
- Different locations were scanned during the test

Sci-W ECAL Test with Positron

• The e+ test, also the beam has hadrons.

10 GeV e+

40 GeV e+

10 GeV hadron 100-50 Y position / mm 0--50 -100-300 250 0 50 100 150 200 Layer position [mm]

Combined Test with pions

2022.10.28 - 23:13:42

Beam test this year

• SPS

- Apr 24 May 10: 16 days at SPS H2
- Similar test plan with last years but more high energy events
- PS
 - May 14 May 31: 2 weeks at PS T9
 - Study in detail low-energy particles
 - Muons : wide beam profiles desirable
 - Electrons: energy scans for EM shower studies + calibrations
 - Hadrons: energy scans for hadronic shower studies

particle	momentum	position	test
Pion	10,20,30,40, 50,60,80 GeV/c	center	ECAL energy response
Electron	10,20,30,40, 50,60,80 GeV/c	center	ECAL energy response
Muon	108 GeV/c	Position scanning	ECAL MIPs response

- Both the Sci-W ECAL and AHCAL prototypes were assembled, and tested at CERN last year.
- The two calorimeters has been taking beam test from Oct. 19 to Nov. 2, the preliminary results show the calorimeters work very well
 - The Sci-W ECAL and AHCAL were tested with pions and positrons from 10 GeV/c to 120 GeV/c
 - ➤ We collected about 25 million events in this beam test
- We will conduct a detailed analysis of the data to further tap the potential of the data
- We are actively preparing for the next beam test

backup

PFA Calorimeter

The thresholds were calibrated using muon beam

2023/3/31

moun+ 160GeV

2023/3/31