

中國科學院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

CEPC Beam energy calibration

Yongsheng Huang SOS Shenzhen Campus, SYSU EPC, IHEP, CAS

On behalf of the CEPC Energy Calibration Group

The 2022 CEPC MDI Workshop, 2023.03.29~2023.04.02, Hengyang, Hunan

Working group and collaborations

- IHEP: Xinchou Lou, Yongsheng Huang, Guangyi Tang, Manqi Ruan, Jianyong Zhang, Guangpeng An, Yiwei Wang, Zhe Duan, Guanglei Xu(timing comtrol), Gang Wu(spatial alignment), Hongbo Zhu (Si detector), Shanhong Chen, Meiyu Si
- CIAE: Naiyan Wang(Compton scattering system design), Baozhen Zhao(laser system), Xiaofeng Xi (time synchronization)
- China West Normal University: Xiaofei Lan, (simulation of the Cherenkov radiation, the simulation of new fiber detector)
- University of Science and Technology of China: Shubin Liu, Changqing Feng(electronic system and test)
- CERN factory & CIVIDEC: CEO, CVD diamond detector and test
- Wuhan University: Yuan Chen(Magnetic design)

Outline

Laser-Compton scattering method

2

Microwave-Compton scattering method

Configuration of beam-energy calibration system @ CEPC

CEPC collider ring (100km)

Outline

- Motivation and requirement
- Configuration
- Principle
- Simulation & Results

Motivation & Requirements for beam energy

Motivation

- The mass & the width of Z/W boson can be measured at CEPC Z pole and W threshold scans runs.
- The dominant systematic is expected to come from beam energy measurements.

- The measurement of the ZH production cross section and the Higgs boson using the recoil mass method.
- The beam energy is an input parameter to perform measurements of the Higgs properties

Requirements

 The CEPC physics program requires precise determination of beam energies with an accuracy of the order of 1 MeV@ Higgs and 100 keV@Z/W.

An F et al., Chinese Physics C 43, (2019) 043002 CDR: Volume 2-Physics & Detector.'' arXiv preprint arXiv:1811.10545 (2018).

Resonant depolarization method

> Resonant depolarization(RD) method @VEPP-4M LEP

• Scheme of VEPP-4M complex from the view of polarization experiments.

Table: Experiment of calibrated beam energy by RD

粒子	实验	时间
Φ, K^{\pm}	VEPP-2M ^[78, 79]	1975-1979
$J/\psi,\psi(2S)$	VEPP-4 ^[80, 81]	1980-1981
$\Upsilon(1S), \Upsilon(2S), \Upsilon(3S)$	VEPP-4 ^[8286]	1982-1986
K^0, ω	VEPP-2M CMD [93]	1987
Ζ	LEP [87]	1993
$J/\psi,\psi(2S),\tau,D^0$	VEPP-4M ^[8992]	2003-2015

- The resolution is achieved in VEPP-4M is 1e-6.
- CEPC, achieving the required beam polarization of at least 5% to 10% for RD in the Higgs mode may be challenging.

The beam energy measurement system for the Beijing electron-positron collider

> Compton Back Scattering method(CBS) @VEPP-4M BEPCII VEPP-2000

- Measuring the energy of the scattered photons (E_{γ}) by HPGe detector.
- The relative systematic uncertainty of the electron and positron beam energy determination is estimated as 2×10^{-5} .

CEPC beam energy calibaration

Method: the electron beam distribution after Compton back-scattering combining a bending magnet

0.1

Energy(J)

202 mb

~ 2.35 mrad

 15×10^{10}

Compton scattering cross section

Ne

Collision angle α

- The technique is "non-destructive":
 - ~1/10000 Compton scattered particles in one collision.

Spatial distribution of scattered particles

- Beam energy can be calibrated • by:
- Position of the main electron beam particles(X_{beam}).
- Position of scattered photons(X_{γ}). _
- Position of the scattered electrons with the least energy(X_{edge}).

$$E_{beam} = \frac{(m_e c^2)^2}{4w_0} \frac{X_{edge} - X_{beam}}{X_{beam} - X_{\gamma}}$$

arXiv:1803.09595, 2018.

Statistical error

• Tens of seconds of data taking is necessary to achieve accuracy < 1 MeV@Higgs mode.

IP-Detector distance	100 m	200 m	300 m
Pixel size	100μm × 50μm	$500 \mu m imes 100 \mu m$	$2mm imes 200 \mu m$
$\mathbf{X}_{\mathbf{\gamma}} + \Delta \mathbf{X}_{\mathbf{\gamma}}[\mathbf{m}\mathbf{m}]$	$-299.762 \pm 8.905 \times 10^{-5}$	-674.460±4.475 \times 10 ⁻⁵	$-1049.16 \pm 1.134 \times 10^{-4}$
$X_{beam} + \Delta X_{beam}[mm]$	-0.0011±1.8492 $ imes$ 10 ⁻⁴	$-0.0009 \pm 7.3215 \times 10^{-4}$	-0.0015 ± 0.0018
$X_{edge} + \Delta X_{edge}[mm]$	1284.1928 ± 0.0037	2889.4319 ± 0.0132	4494.6437±0.0314
E _b [GeV]	119.9999	120.0003	119.9991
$\Delta \mathbf{E_b}[\mathbf{MeV}]$	0.356	0.573	0.875

11

Systematic deviation

$$E_{beam} = \frac{(m_e c^2)^2}{4w_0} \frac{\Delta\theta}{\theta_0} = \frac{(m_e c^2)^2}{4w_0} \frac{X_{edge} - X_{beam}}{X_{beam} - X_{\gamma}} + \mathcal{O}$$

 $\Delta \theta$ is the angle between the main beam and the scattered beam of min. energy

 θ_0 is the bending angle of BM

 ${\cal O}$ denotes the systematic deviations

(1) $\frac{\Delta\theta}{\theta_0}$ and $\frac{tan\Delta\theta}{tan\theta_0}$

(2) Differences in trajectory for different energies

ΔE = 9.75 ± 0.04 MeV for a magnet with a magnetic field strength of 0.5 T (deviation is 0.2%) and length is 3 m.

$$\Delta s = |s_1 - s_0| = \left| 2\rho_1 \arcsin\left(\frac{l_1}{2\rho_1}\right) - 2\rho_0 \arcsin\left(\frac{l_0}{2\rho_0}\right) \right|^2$$

• Particles of different energies have different trajectories in the BM $\rightarrow \Delta E = 5.76 \text{ MeV}$

S₀

Systematic uncertainty

- Considering the measurement of magnet strength and drift distance.
- The relative error is assumed to be $\Delta B/B \approx 10^{-4}$ and $\Delta L/L \approx 10^{-4}$
- The systematic uncertainties is about 20 keV

- More systematic error sources need to be considered.
- Extrapolating the center-of-mass energy needs to be discussed later.

The choice of the laser parameters

• The distribution of scattered electrons

- (1) Restrictions on the photon energy: $\frac{\delta E_{beam}}{E_{beam}} = \frac{\delta \omega_0}{\omega_0} = 8.3 \times 10^{-6}$
- (2) Restrictions on the photon wavelength:
 - To reduce drift distance :
 - Short wavelength laser(532 nm \rightarrow 266 nm)
 - Dipole length shorten (combining the system layout)

Comparison of the key parameters for different models in CEPC

Guangyi Tang

	Higgs mode	Z mode	WW scan	tt̄ scan
E _{beam} /GeV	120	45	80	175
X _{edge} /m	6.16352	9.29686	7.10343	5.52276
X _{beam} /m	1.87935	5.00178	2.81903	1.28868
$\delta X_{edge}/m$	2.6×10^{-5}			
$\delta X_{beam}/m$	6×10^{-8}			
$\delta E_{beam}/MeV$	1.0	0.3	0.6	1.8

- The statistical uncertainties of beam energy are not included here
- https://aip.scitation.org/doi/10.1063/1.5132975

Beam energy → the center-of-mass energy

$$<\sqrt{s}>=2\sqrt{E_+E_-}\cos\frac{\alpha}{2}$$

- Some discussion
- More systematic error sources need to be considered.
- Extrapolating the center-of-mass energy needs to be considered.
- Potential corrections of c.m. energy
 - The correlated effects of dispersion
 - Collision offsets
 - Difference between the electron and positron beams
- Beam energy uncertainties from surroundings
 - Tidal effect \rightarrow collider orbit circumference
 - Railway \rightarrow magnetic field

Ref: [1] arXiv preprint hep-ex/0410026, 2004. [2] Müller, Anke-Susanne. ''Measurements of beam energy.'' (2009). [3] Alain Blondel (Geneva U. and CERN and Paris U., VI-VII)

Outline

Microwave-Compton scattering method

Microwave-Compton scattering method

- Independent extraction device.
- Separately detect the positions of scattered electrons, scattered photons and unscattered beams.
- With some proper corrections, the beam energy uncertainty of the Higgs mode is around 2 MeV.

[1] Review of Scientific Instruments 91, 033109 (2020). [2] Nuclear Inst. and Methods in Physics Research, A 1026 (2022) 166216,

Microwave-beam Compton backscattering^[2]

- Use synchrotron radiation lead wire.
- Detection of the maximum energy of scattered photons by a HPGe detector.
- If the beam energy is calibrated within 10MeV, it will be interesting and worth doing.

Microwave-Compton method of calibration of beam energy

Head-to-head collision $\alpha = \pi$:

Considering $\varepsilon_0 \gg m \gg \omega_0$

$$\omega_{max} = \frac{\varepsilon_0^2 \sin^2(\frac{\alpha}{2}) + \frac{m^2}{4} \cos\alpha}{\varepsilon_0 \sin^2(\frac{\alpha}{2}) + \frac{m^2}{4\omega_0}}$$

$$\varepsilon_0 = \frac{\omega_{max}}{2} \left(1 + \sqrt{1 + \frac{m^2}{\omega_0 \omega_{max} sin^2(\frac{\alpha}{2})}}\right)$$

Scattered photons:

Table I. CEPC parameters in Higgs mode.

	Higgs
Beam energy ε_0 (GeV)	120
Bunch number B	242
Particles/bunch $N_2(10^{10})$	15
Bunch spacing (ns)	680
Beam current I (mA)	17.4
Bending radius ρ (km)	10.7
Beam size $\sigma_{x_2}/\sigma_{y_2}(\mu m)$	200-450/5-20
Bunch length σ_{z_2} (mm)	4.4

- The HPGe detector has a good calibration of gamma energy within 1 to 10MeV.
- The energy of the scattered photons is chosen to be in the range of (8–20 MeV) compared with the synchrotron radiation background.

Choosing $\omega_{max} = 9 \text{MeV}$

$$\omega_0 = 4.08 \times 10^{-5} \text{eV}$$
 $\lambda = 3.04 \text{ cm}$

Resonant Cavity

> Choosing the TM₀₁₀ mode of the standing wave cavity: $\lambda = \frac{2\pi}{K} = 2.613R$

 $E_{z_1} = E_m J_0(K_c r) e^{j\omega t}$

$$H_{arphi} = jE_mrac{1}{\eta}J_1(K_cr)e^{j\omega t}$$

> The Poynting vector:

$$S_r = -E_z \times H_{\varphi} = \frac{E_m^2 J_0(K_c r) J_1(K_c r) sin(\omega t) cos(\omega t)}{\eta}$$

System Design

 The electrons and photons separation device designed for the beam line of the synchrotron radiation applications on CEPC.

Differential cross-section

$$\frac{d\sigma_0}{d\omega'} = \left| \mathbf{F}_{(\mathrm{TM}_{010})}^{(1)} \right|^2 \cdot 2\pi \frac{r_e^2}{\kappa^2 (1+u)^3} \frac{\varepsilon_0}{\left(\varepsilon_0 - \omega'\right)^2} \Big\{ \kappa \Big[1 + (1+u)^2 \Big] - 4\frac{u}{\kappa} (1+u)(\kappa - u) \Big\}. \tag{F_{(TM_{010})}^{(1)}} = \mathbf{0}.608484)$$

• For the microwaves with a wavelength of 3.04 cm collide head-on with 120 GeV electrons on CEPC, the maximum energy of scattered photons is $\omega' = 9$ MeV.

https://doi.org/10.1140/epjd/s10053-022-00389-4.

• The maximum energy of the nonlinear Compton scattering is $\omega' = 14$ MeV, $\omega' = 18$ MeV, $\omega' = 23$ MeV, $\omega' = 27$ MeV, corresponding to the nonlinear order 2, 3, 4, 5, respectively.

Luminosity and Number of Scattered Photons

> The areal density of the photon number $(1/(m^2 \cdot s))$:

$$\overrightarrow{\sigma_m} = rac{ec{S}}{\omega_0} = rac{1}{\eta\omega_0} E_m^2 J_0(K_c r_1) J_1(K_c r_1) \sin(\omega t) \cos(\omega t) ec{r_1}$$

> The luminosity in the Compton scattering process : B = 1, f' = 1

- For ω'_{max} = 9 MeV, the luminosity of the three parts is $4.3 \times 10^{33} / m^2$, $5.14 \times 10^{33} / m^2$, $3.18 \times 10^{33} / m^2$.
- The number of the scattered photons in the three parts is 17193, 20541, 12725 respectively.

Synchrotron Radiation

The photon flux (photons/s/mrad /0.1%BW):

$$\frac{dF_{bm}(y)}{d\theta} = 2.457 \times 10^{13} E(\text{GeV}) I(A) G(y) \qquad G(y) = y \int_{y}^{\infty} K_{\frac{5}{3}}(y') dy,$$

Monte-Carlo Simulation

• The energy spectrum of the scattered photons

• The scattered photons and the synchrotron radiation.

• Photons flux spectrum

400 cm polyethylene and 0.2 cm lead

Table 2

The number of synchrotron radiation and scattered photons before and after shielding. B is the signal-to-noise ratio. After shielding, low-energy synchrotron radiation photons are absorbed.

Energy (0-9 MeV)	Before shielding	After shielding
Scattered photons(S)	3.519913×10^{6}	648
Synchrotron radiation(N)	7.991446 × 10 ⁷	2
B(S/N)	0.44	324

Effect of the Hole Radius

The resonance frequency and Q value of the cavity comes from the theoretical calculation, the CST simulations without holes and the CST simulations with the hole radius, 0.15 mm.

Parameter	Frequency (GHz)	Q value
Theoretical calculation	9.848975	11055.4
Simulation (without hole)	9.848976	11048.2
Simulation (hole radius 0.15 mm)	9.848973	11043.8

The variation of the resonance frequency in the cavity with the hole radius 1 mm, 1.5 mm, and 2 mm. The resonance frequency decreases slightly with the increase of the hole radius. The influence on the resonance frequency can be corrected by fine-tuning the cavity size.

Hole radius/mm	Frequency/GHz
1.0 mm	9.84790
1.5 mm	9.84533
2.0 mm	9.84026

- Almost no effect on the field, the effect on the frequency can be compensated.
- The energy storage in the cavity is 0.001J.

$$W = \frac{\varepsilon_0}{2} \cdot 2\pi l E_m^2 \int_0^R J_0^2 (\frac{2.405}{R}r) r dr = \frac{1}{2}\pi \varepsilon_0 R^2 l E_m^2 J_1^2(2.4)$$

Possible Background

The effect of radiation in the field on the electron beam.

In the TM₀₁₀ mode:
$$\begin{array}{ll}
E_{z_1} = E_m J_0(K_c r_1), \\
\bar{E}_{z_1} = \frac{\int_{-R}^{R} E_{z_1} dr_1}{2R}, \\
E_{z_1} = \frac{\int_{-R}^{R} E_{z_1} dr_1}{2R}, \\
E_{z_1} = \frac{120 \text{GeV}}{2R}, \\
E_{z_1} = \frac{\gamma m_0 c^2}{r}, \\
E$$

• Synchrotron Radiation: Bending radius: 10.7 km, Critical energy: 352.8 keV.

Error analysis

- The laser alignment accuracy is up to 5×10^{-7} ;
- The stability of the high-frequency microwave source itself can reach $10^{-5} \sim 10^{-6}$;
- Assuming the detector can reach the order of 10⁻⁴ under good calibration;
- The measurement accuracy of the beam energy can reach the 6MeV@120GeV ($\Delta E/E \sim 5 \times 10^{-5}$)

Summary

Thanks

Requirement of measurement accuracy

$$1MeV \qquad \qquad \frac{\Delta E_{beam}}{E_{beam}} = \sqrt{\left(\frac{\Delta X_{edge}}{|X_{edge} - X_{beam}|}\right)^2 + \left(\frac{|X_{\gamma} - X_{edge}|\Delta X_{beam}}{|X_{beam} - X_{\gamma}||X_{edge} - X_{beam}|}\right)^2 + \left(\frac{\Delta X_{\gamma}}{|X_{beam} - X_{\gamma}|}\right)^2}$$

> The requirement for the measurement of positions: ΔX_{edge} , ΔX_{beam} , ΔX_{γ}

Systematic deviation

- Considering the track of scattered electrons of different energies in dipole
- The deviation by the synchrotron radiation.

Source	Error of device	Systematic deviation in beam energy
Dipole (0.5T, 3m)	$\Delta B/B = 0.2\%$	$\Delta E = 9.75 \pm 0.04 \text{ MeV}$
Position deviation by scattered electrons with different energies	$\frac{\Delta s}{s} = 4.8 \times 10^{-5}$	$\Delta E = 5.76 \text{ MeV}$

- More systematic error sources need to be considered.
- Extrapolating the center-of-mass energy needs to be considered.