Detector Simulation of Beam induced background

Wei Xu (IHEP)

on behalf of the MDI Group

Outline

Introduction

- Induced backgrounds
- Interaction region layout
- Background estimators

• Results of background estimation

- Pair production
- Off-energy beam particles
- Summary

Operation Mode	Higgs (240 GeV)	W (160 GeV)	Z (91 GeV)
Particles/bunch N_e [10 ¹⁰]	15	12	8
Bunch Number	242	1524	12000
Horizontal beam size $\sigma_x[\mu m]$	20.9	13.9	6.0
Vertical beam size $\sigma_y[\mu m]$	0.06	0.049	0.078
Energy spread $[\%]$	0.134	0.098	0.080
$\mathscr{L} [10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	3	10	17

Introduction

- Beam induced background at CEPC
 - Pairs production from beamstralung photon emitted from the beam particles
 - Dominated by the electron pair
 - Muon pairs and hadrons production are suppressed
 - Beam particles with fraction of energy loss greater than acceptance(beam lost particles)
 - Beam-gas scattering
 - Beam-thermal photon scattering
 - Bhabha scattering
- Radiation damage on the silicon tracker
- Lower the tracking efficiency

Beamstrahlung

Detector Simulation

- Generation of background
 - Guinea-pig++
 - Pairs production
 - Beamstralung photons
 - SAD
 - Beam Lost particles
- Mokka

- Production of electron pairs
- Tracking of electron pairs
 - Deflection by the EM field of beam
 - Until beam sperate from each other completely
- Longer bunch of CEPC (millimeter level)
 - Produced electron pairs can reach to the region far away the IP
 - Effect of external the magnetic field and interaction with the beam pip need to be considered
 - Guinea-pig is develop for Linear collider (micrometer level)
- Modification of the Guinea-pig
 - Include the magnetic field from the solenoid
 - Stop tracking of electrons before hitting the beam pipe
- A full simulation tool based on Geant4 and realistic description of detector (base line of CDR)
- Record the steps of primary and secondary particles
 - Particle type, step length, momentum, position...

Beamstrahlung

Estimation of background

- Background estimators
 - Hit density: $\frac{Number \ of \ hits}{area} [hits/BX]$
 - Detector occupancy
 - TID: Total lonizing dose Dose= $\frac{E_{deposited}}{M_{detector}} = \sum_{i} \frac{dE^{i}}{dx} \frac{L_{i}}{S_{i}} \frac{L_{i}}{\Delta M} [kRad/year]$
 - Total energy deposited by the ionizing process in a unit volume
 - Surface damage of silicon devices
 - <u>arXiv:1502.00289</u>
 - 1 MeV equivalent neutron fluence
 - energy deposited by non-ionizing process in a unit volume: $\frac{dE_{non}L}{dx \rho}$
 - $NIEL(1 MeV, neutron) \times \frac{1}{2}$

$$\frac{NIEL(E_k, type)}{NIEL(1 MeV, neutron)} Fluence$$

- Bulk damage of silicon devices
 - <u>arXiv:1502.00289</u>

A safety factor of 10 is always applied

Background from the Pairs production

- Pairs produced in beam-beam interaction
 - With the Generator GUINEA-PIG++
 - Low energy and in the very forward region

Pair Production

• Hit map of vertex detector at the Higgs mode

Nearly uniform in the transverse view

More dense in central of first layer

Pair Production

- Results of pair production in the vertex detector
 - BKG decrease rapidly with increasing radius

Layer	Hit Density $[\mathrm{cm}^{-2}\mathrm{BX}^{-1}]$			$^{ m TID}$ [kRad/yr]			1 MeV Equ. Neu. Fluence $[n_{eq} \times 10^{12} cm^{-2} yr^{-1}]$		
	Higgs	W	Z	Higgs	W	Ζ	Higgs	W	Z
1	1.81	1.21	0.36	499.44	2077.84	5551.37	0.97	3.82	10.64
2	1.23	0.88	0.29	353.3	1486.86	4188.47	0.68	2.75	7.76
3	0.12	0.07	0.03	36.89	129.83	455.15	0.07	0.26	0.87
4	0.11	0.06	0.03	31.52	114.26	419.84	0.07	0.24	0.78
5	0.02	0.01	0.01	6.85	22.63	122.46	0.02	0.076	0.27
6	0.01	0.01	0.01	5.89	19.20	107.54	0.02	0.065	0.24

Table 1: Background from the pair production at different layers of VTX

2023/3/31

Higgs (240 GeV), W (160 GeV) and Z (91 GeV)

Radiation map tracker region

- Higgs mode
 - Most particles are confined in the beam pip
 - Backscattering particles are produced in the

region $z \in [90, 100]$

- LumiCal
- Transition from single pipe to double pipe

9

2(

Charge particles fluence(Z2T)

Beamstrahlung photon for 2T mode

- Polar angles of most particles are very small
 - Exit the detector with beam
- Energy is low but the number of photons is huge

$$Y \approx \frac{5}{6} \frac{r_e^2 \gamma N}{\alpha \sigma_s \left(\sigma_x^* + \sigma_y^*\right)}$$
$$n_\gamma \approx 2.54 \left[\frac{\alpha \sigma_s}{\bar{\lambda}_c \gamma} \frac{Y}{(1 + Y^{2/3})^{1/2}}\right]$$

5

2023/3/31

Generated beam lost particles

- Beam particles lose energy in scattering processes
 - Radiative Bhabha scattering
 - Negligible
 - Beam thermal photon
 - Beam-gas scattering

- Initial Position in z axis where the beam lost particles hit the beam pip
 - Can enter the detector
 - With the collimator in the upstream

Off-energy Particles

- Hit map of vertex detector
 - From beam gas scattering for Higgs mode

Results

- Beam lost particles
 - Beam-Gas scattering

Layer	Hit Density $[\mathrm{cm}^{-2}\mathrm{BX}^{-1}]$			$_{ m TID}$ $[m kRad/yr]$			1 MeV Equ. Neu. Fluence $[n_{eq} \times 10^{12} cm^{-2} yr^{-1}]$		
	Higgs	W	\mathbf{Z}	Higgs	W	Z	Higgs	W	\mathbf{Z}
1	0.33	0.35	0.14	390.20	1327.68	4061.53	1.04	3.62	11.00
2	0.42	0.47	0.17	452.52	1448.68	4159.80	1.16	3.67	10.78
3	0.13	0.14	0.09	124.96	433.04	1969.53	0.33	1.14	4.91
4	0.11	0.13	0.08	104.58	353.01	1664.31	0.29	0.96	4.41
5	0.01	0.01	0.01	12.49	44.34	361.85	0.04	0.14	1.12
6	0.02	0.02	0.01	11.19	42.60	329.28	0.03	0.14	0.98

• Beam-thermal scattering

Layer	Hit Density $[\mathrm{cm}^{-2}\mathrm{BX}^{-1}]$			TID [kRad/yr]			1 MeV Equ. Neu. Fluence $\left[n_{eq} \times 10^{12} \text{cm}^{-2} \text{yr}^{-1}\right]$		
	Higgs	W	Z	Higgs	W	Z	Higgs	W	Z
1	0.13	0.07	0.03	72.33	253.01	770.06	1.95	6.87	19.16
2	0.15	0.08	0.03	77.67	247.86	786.21	1.99	6.85	20.01
3	0.05	0.03	0.02	25.94	83.46	368.76	0.74	2.27	9.79
4	0.06	0.03	0.02	21.25	74.93	334.04	0.56	2.08	8.95
5	0.01	0.01	0.01	3.41	9.94	92.67	0.11	0.31	2.98
6	0.01	0.01	0.01	2.83	11.83	73.73	0.09	0.56	2.19

2023/3/31

Radiation map in the track region

- From the Beam-Gas scattering
 - for the Higgs mode
- Fluence is flat along the Z axis
 - Secondary scattering particles
 - Backscattering

Charged particles fluence [Charged particles cm⁻²] for BX

Radiation map in the track region

- From the Beam-Gas scattering
 - for the Z mode

Summary

- Pair production && beam lost particles
 - BKG at fist layer of vertex detector (dominated by the pairs production)

	H (240)	W (160)	Z (91)
Hit Density [hits/cm ² ·BX]	2.3	1.7	0.63
TID [MRad/year]	0.93	3.65	10.47
1 MeV equ. Neu. Flu. [10 ¹² n _{eq} /cm2·year]	2.2	8.1	23.6

- Large backscattering particles are produced in the region before LumiCal and transition from signal pipe to double pipe
- For the TDR, the TID and 1 MeV equ. Neu. Flu. can increase by a factor 50 according to the luminosity
- Beamstrahlung photons
 - move along with beam
 - Without entering the detector
 - Photon energy is low but photon number is huge: 2.82×10^{11} per BX
 - Power for the beamstrahlung photons:469.5 kW per beam
 - Can be deposited in the downstream

Next to do

- Next to do
 - Extend background estimation to other sub detector
 - Stop recording the steps which don't enter the detectors
 - Speed up the simulation
 - Save the space
 - Complete simulation for the TDR

Backup

TPC

2023/3/31

Pair production

Pair Production

• Primary electrons flux without interaction

2017/12/20

In incoherent pair production, an electron-positron pair is produced via the interaction between two incoming photons, which can be real and/or virtual. There are three incoherent processes, including: the Breit-Wheeler process $\gamma \gamma \rightarrow e^+e^-$, in which both photons are real; the Bethe-Heitler process $e\gamma \rightarrow ee^+e^-$, in which one photon is real and the other is virtual; and the Landau-Lifshitz process $ee \rightarrow eee^+e^-$, in which both photons are virtual. The approximate cross sections of the three processes can be calculated with the formulae in Refs. [8, 12, 13]. In each bunch crossing at CEPC, there will be roughly 44, 327 and 1322 electron-positron pairs produced from the Breit-Wheeler process, the Bethe-Heitler process and the Landau-Lifshitz process, respectively.

Displacement damage

2023/3/30

NIEL