

Institute of High Energy Physics Chinese Academy of Sciences

Beam background experiment at BESIII/BEPCII

BIN WANG, HAOYU SHI, HUANGCHAO SHI

2023.03.31

The 2022 CEPC MDI Workshop, University of South China, March 30 – April 1, 2023

Content

Motivation

Beam background experiment in 2021 and 2022

Experiment Plan in 2023

Simulation of beam background at BEPCII/BESIII

Summary and next to do

Motivation

> The BEPCII upgrade aims to extend the beam energy to 2.8 GeV and optimize the beam parameter at 2.35 GeV. The peak luminosity is expected to be $1.1 \times 10^{33} cm^{-1} s^{-1}$.

> The consequent high beam background should be controlled $\frac{3}{4\times 1}$ within a safety range.

Precise beam background simulation and experimental confirmation are necessary for commissioning the beam background of BEPCII upgrade project.

First beam background experiment in recent years.

> Plan to measure the Touschek background and beam-gas background separately.

Compare the experimental results with the simulation results to optimize the background simulation program. $O_{\rm SB} = S_{\rm tous} \cdot \frac{I_t \cdot I_b}{\sigma_x \sigma_y \sigma_z} + S_{\rm gas} \cdot I_t \cdot P(I_t) + S_{\rm const},$

> O_{SB} is the total single beam background rate that can be represented by count rate of the MDC, $I_t = n_{bunch} \times I_b$, and $P(I_t)$ is vacuum pressure.

> The constant background is measured without any beam in the storage ring.

> The Touschek and beam–gas backgrounds can be separated by using different bunch currents.

Touschek background: Parameters setting for bunch number scan

N bunch	118	113	100	90	82	69	64	60	56
I _b /mA	3.8	4.0	4.5	5.0	5.5	6.5	7.0	7.5	8.0

Beam-gas background: fixed bunch current to 6 mA and scan bunch number from 15 to 90.

- The fit to the count rate in the first layer of the MDC with respect to the bunch current for both electron and positron beam.
- The accumulated count rate of separate background sources in all MDC layers when bunch current is 6 mA.
- The Touschek background is dominant in all layers and the beamgas background occupies a small portion, especially in the outer layers.
- The background at first layer of MDC is composed of 75.1% Touschek, 15.4% beam-gas, and 9.5% constant background.

Simulation of beam background at BEPCII

Simulation of beam background at BEPCII

The results of the beam background simulation and experiment have been published in NIMA.

- The nominal beam current is 450 mA. Four bunch number (60, 75, 82, and 90) is selected.
- Changing the aperture of movable collimator located at -8.2 m from 35 mm to 32 mm (27 mm), the beam background increased more than four times. The injection is failed if the aperture is decreased to 22 mm.
- Adjusting the apertures of the other two movable collimators did not noticeably affect the beam background.

- Changing the aperture of movable collimator does not obviously affect the machine's operation.
- Experimental study on aperture of movable collimator and the beam background.
- Further study requires more experimental data.

Experiment plan in 2023

> The further movable collimator experiment is ongoing.

- Scan the dynamic aperture of collimators to observe the change of beam background.
- > Consider more effects, such as close orbit distortion, life

time, beam size, beam-beam effect, and so on.

Summary and next to do

Two rounds of beam background experiment are collected for optimizing the beam background simulation.

> The data/MC ratio shows that the Touschek background in simulation is larger than in the experiment by one to two orders of magnitude.

□ More background experiments at BEPCII will be carried out to optimize the simulations.

Backup

Simulation v1 -> v2

Based on experimental data, it is necessary to extend the input particle range from $\pm 4m$ to $\pm 10m$ for Geant4 simulation. Due to betaX reaching its maximum value at $\pm 4.2m$, most background particles are lost at this point.

MDI geometry update v2->v3: SAD

- 根据CAD设定SAD中的孔径
- 上游7.9m, 8.2m分别存在y,x方向的 collimator
- 超过90%的粒子丢失在collimator 处

16 16

v2->v3: SAD->G4坐标转换

为了充分模拟束流管内壁的粒子与束流管在Geant4中的相互作用,将SAD输出的粒子的xy方向位置固定在管壁上,z 方向不变

会带来与z方向步长的同量级的误差(<20mm)

坐标转换需要与Geant4中孔径匹配, 束流管中心轴位置是 关键

Z range/mm	X方向中心轴函数(mm)	
(-2129,2129)	x=0	*C/ 洏 -
(-12000,-2129)	x=0.026*z+18.385	1/13
(2129,2300)	x=0.02655*z-19.237	
(2300,2900)	x=0.045*z-61.638	
(2900,12000)	x=0.0656*z-121.355	

[•]CAD中,测量离IP的距离来 则量截距

MDI geometry update v2->v3: Geant4

- ▶ 根据CAD设定Geant4 MDI几何:
 東流管,磁铁, collimator,法
 兰
- 几何结构拓展至±10m
- 主要是沿着束流管的物质
- 放入BOSS框架下模拟

Adjustment of movable collimators

- ▶ 将所有movable collimator 孔径从19mm调整至35mm
- Touschek 丢失分布: collimator $\rightarrow \beta_x$ 最大 丢失率:下降86%
- Coulomb 丢失分布: 同collimator与Y形管处 丢失率:下降77%

aperture=19mm

aperture=35mm

Lost position and count rate

- 丢失率和计数率都是正电子比电子高~50%
- 模拟中电子环比正电子环多±11m的collimator
- Touschek与Coulomb在±10m内的丢失率占全环丢失的~20%

Touschek 与 beam-gas寿命数据-MC比较

lifetime(hour)	e-	e+
data touschek	2.29	2.25
MC touschek	11.0	11.8
data beam-gas	13.5	14.8
MC beam-gas($P = 10^{-7}Pa$)	25.6	25.6

 $\frac{1}{\tau}$ 将作为后续MC的修正因子 Touschek: S=4.8 for e-, 5.2 for e+ Beam-gas: S=2.8 for e-, 2.5 for e+

Touschek fit – Z=-8.2 m, DA=27 mm

Touschek fit – Z=-8.2 m, DA=32 mm

