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New sum rules for B! �;K and B! �;K� form factors are derived from the correlation functions
expanded near the light cone in terms of B-meson distribution amplitudes. The contributions of quark-
antiquark and quark-antiquark-gluon components in the B meson are taken into account. Models for the
B-meson three-particle distribution amplitudes are suggested, based on QCD sum rules in heavy-quark
effective theory. Employing the new light-cone sum rules, we calculate the form factors at small
momentum transfers, including SU�3�-violation effects. The results agree with the predictions of the
conventional light-cone sum rules.
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I. INTRODUCTION

There is a growing demand for more accurate and reli-
able calculations of heavy-to-light transition form factors
in QCD. The B! P, V form factors with P � �, K and
V � �, K� final states provide the hadronic input in ex-
clusive semileptonic B! P�V�l�l, B! P�V��ll and radia-
tive B! V� decays. The same form factors determine
factorizable amplitudes in the nonleptonic charmless B
decays. All these decay channels are used for determina-
tion of Cabibbo-Kobayashi-Maskawa (CKM) parameters
and for various tests of the standard model. Pinning down
the uncertainty of the form factors is in many cases the only
way to increase the precision of these analyses.

Lattice QCD is successfully used to calculate heavy-to-
light form factors in the region of large momentum-transfer
squared, q2 � �pB � pP;V�2. To access small q2 (large
energies of the light hadron), other QCD-based approaches
are employed, such as the light-cone sum rules (LCSR) [1]
for B! P [2,3] and B! V [4,5] form factors. To derive a
LCSR, one starts with the operator-product expansion
(OPE) of a dedicated correlation function near the light
cone. The OPE result is then combined with the hadronic
dispersion relation and quark-hadron duality; hence there
are many common features with the original QCD sum
rules [6]. In the standard LCSR approach (hereafter called
light-meson LCSR), the correlation function is taken be-
tween the vacuum and light P- or V-meson state, whereas
the Bmeson is interpolated by a heavy-light-quark current.
As a result, the long-distance dynamics in the correlation
function is described by a set of pion, kaon, or �-,
K�-meson distribution amplitudes (DA’s) of low twists.
The main uncertainties in the light-meson LCSR originate
from the limited accuracy of the DA parameters. In addi-
tion, a sort of ‘‘systematic’’ uncertainty is brought by the
quark-hadron duality approximation in the B-meson chan-
nel. Hence, it is desirable to confirm the predictions of the
light-meson LCSR by calculating the same form factors in
an independent way, using different input and assumptions.

A different sum rule for the B! � form factor was
recently suggested by us in [7] and, independently, in the

framework of soft collinear effective theory (SCET) in [8].
The main idea is to ‘‘invert’’ the correlation function, that
is, to interpolate the pion with an appropriate light-quark
(axial-vector) current, and put the B meson on shell using
the light-cone expansion in terms of the B-meson DA’s.
The latter are universal nonperturbative objects introduced
in the framework of heavy-quark effective theory (HQET)
[9] (see also [10]; a review can be found in [11]) and used
in several factorization formulas for exclusive B decays
(see, e.g., [12–15]).

In this paper the new version of LCSR (we call it
B-meson LCSR) is developed further. Following [7], we
introduce the B-to-vacuum correlation function and prove
its light-cone dominance. The new B-meson LCSR for
several phenomenologically important B! P, V form
factors at q2 � 0 are derived. In addition to the leading-
order contributions of the two-particle (quark-antiquark)
B-meson DA’s �B

� and �B
�, we calculate the corrections

due to the three-particle (quark-antiquark-gluon) DA’s de-
fined in [16]. The functional form of the latter DA’s was not
known previously. Following [9,17], we derive additional
QCD sum rules for the vacuum correlation function of two
heavy-light currents in HQET. We then use the perturbative
parts of these sum rules to fix the behavior of the three-
particle B-meson DA’s at small light-cone momenta of the
spectator quark and gluon. First models for three-particle
DA’s are suggested in which the ‘‘infrared’’ behavior ob-
tained from the HQET sum rules is combined with the
large-momentum falloff. We find that the simple exponen-
tial ansatz for the two-particle DA’s suggested in [9] and
the exponential version of our model for the three-particle
DA’s form a self-consistent set, so that the relations be-
tween B-meson DA’s [16] following from the equations of
motion are fulfilled.

Our model, as well as LCSR obtained below, does not
include QCD radiative corrections which are beyond the
scope of this work. next-to-leading order (NLO) effects
have already been taken into account in more elaborate
models of �B

� based on HQET sum rules [17], or on the
first two moments [18]. The most important effect in NLO
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is the ‘‘radiative tail’’ of �B
��!� at !! 1 caused by the

nontrivial renormalization [19] of the effective heavy-light
current. Importantly, this peculiar ultraviolet behavior of
B-meson DA’s plays no role in LCSR at the leading, O��0

s�
order, where a sort of end-point mechanism dominates.
The duality threshold in the sum rule cuts off the integra-
tion over the spectator momentum ! well below the region
where the effect of the tail becomes noticeable. Note that
radiative corrections to the LCSR in SCET for the B! �
form factor have already been calculated in [8], and their
numerical impact is moderate.

The LCSR obtained in this paper depend on the parame-
ters determining the B-meson DA’s. The most important
input is �B, the first inverse moment of�B

��!�. At the same
time, the new sum rules are independent of the DA’s of �,
K or �, K� mesons. The light mesons are now interpolated
by the light-quark currents; hence the new sum rules rely
on the quark-hadron duality in the channels of these cur-
rents. The duality-threshold parameter in each channel is
determined from the corresponding two-point QCD sum
rule for the light-meson decay constant. Furthermore, the
SU�3�-violation effects are calculated in terms of the
s-quark mass and the differences in the duality-threshold
parameters for strange and nonstrange mesons.

From the new sum rules we obtain numerical predictions
for various B! �, K and B! �, K� form factors. Our
main observation is the sensitivity of the form factors to the
input value of �B. This circumstance was already used in
[7] to extract the interval for �B using the light-meson
LCSR result for the B! � form factor f�B�. Here, in order
to be independent of the light-meson LCSR, we use the
interval of �B inferred from QCD sum rules in HQET [17].
With this input, we observe a good agreement of the
predicted form factors with the most recent results from
the light-meson LCSR obtained in [3,5].

In what follows, in Sec. II we introduce the correlation
function and discuss the applicability of the light-cone
expansion. The sum rules in the leading order including
the contributions of two- and three-particle DA’s are de-
rived in Sec. III. In Sec. IV, the B-meson three-particle
DA’s are investigated and their form at small momenta of
light-quark and gluon is established. The models of three-
particle DA’s are suggested and the relations between two-
and three-particle DA’s following from the equations of
motion are investigated. In Sec. V we discuss the heavy-
mass dependence of the form factors obtained from
B-meson LCSR. Section VI contains the numerical results
for the form factors and the concluding discussion. In the
Appendix we present the bulky expressions for the sum
rules at nonvanishing light-quark mass and nonzero mo-
mentum transfer.

II. CORRELATION FUNCTION

Following [7], we define a generic correlation function
of two quark currents sandwiched between the vacuum and

the on-shell �B-meson state:

 

F�B�ab �p; q� � i
Z
d4xeip�xh0jTf �q2�x��aq1�x�; �q1�0�

	 �bb�0�gj �B�PB�i; (1)

where �q1�bb is one of the heavy-light (electro)weak cur-
rents and �q2�aq1 is the interpolating current for a pseudo-
scalar or vector meson, with the flavor content determined
by the valence quarks q1;2. The external momenta of the
currents are q and p, respectively, and P2

B � �p� q�
2 �

m2
B. In Table I we list the combinations of quark flavors q1,

q2 and Dirac matrices �a;b for all �B! P, V transitions and
their form factors considered in this paper. According to
our choice, light pseudoscalar (vector) mesons are inter-
polated with the axial-vector (longitudinal vector) currents.

First of all, we have to convince ourselves that the OPE
near the light cone is applicable for the correlation function
(1) if the variables p2 and q2 are far below the hadronic
thresholds in the channels of �q2�aq1 and �q1�bb currents,
respectively. The correlation function can be systemati-
cally expanded in the limit of large mb in HQET.
Separating the static momentum of the B-meson state,
we rewrite PB � p� q � mbv� k, where v is the four-
velocity of B, and k is the residual momentum. We retain
the relativistic normalization of the state: jB�PB�i � jBvi,
up to 1=mb corrections. Also, the b-quark field is substi-
tuted by the effective field, using b�x� � e�imbvxhv�x�. For
simplicity we consider the rest frame v � �1; 0; 0; 0�. In the
first approximation, mB � mb �

��; hence k0 

�� in this

frame. We also redefine the four-momentum transfer q by
separating the ‘‘static’’ part of it: q � mbv� ~q, so that
p� ~q � k. After the transition to HQET,

 F�B�ab �p; q� � ~F�Bv�ab �p; ~q� �O�1=mb�; (2)

the correlation function in the heavy mb limit,

TABLE I. Combinations of light-quark flavors and Dirac ma-
trices in the correlation function (1) and the corresponding
heavy-to-light form factors.

Transition q1 q2 �a �b Form factors

�B! � u d, u ���5 �� f�B�, f�B�
	�� fTB�

�B! K s d, u ���5 �� f�BK, f�BK
	�� fTBK

�B! � u d, u �� �� VB�

���5 AB�1 , AB�2

	�� TB�1
�B! K� s d, u �� �� VBK

�

���5 ABK
�

1 , ABK
�

2

	�� TBK
�

1
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~F�Bv�ab �p; ~q� � i
Z
d4xeip�xh0jTf �q2�x��aq1�x�; �q1�0�

	 �bhv�0�gj �Bvi; (3)

does not depend on mb, if p2 and ~q2 are generic scales. In
this amplitude two light-quark currents (one of them con-
taining the effective field hv) with virtualities p2 and ~q2

annihilate an effective hadronic state with a mass of O� ���.
From the QCD point of view, the correlation function (3)
resembles the ���p����~q� ! �0�p� ~q� transition ampli-
tude. For the latter a detailed proof of the light-cone
dominance can be found, e.g., in [20]. Following the
same line of arguments for the amplitude ~F�Bv�ab �p; ~q�, we
assume that both four-momenta are spacelike, p2, ~q2 < 0,
and sufficiently large:

 P2; j~q2j � �2
QCD;

��2; (4)

where P2 � �p2. Simultaneously, the difference between
the virtualities is kept large, so that the ratio

 
 �
2p � k

P2 

j~q2j � P2

P2 � 0 (5)

is at least of O�1�. With these conditions fulfilled, the
integral in (3) is supported in the region of small x2 

1=P2, where the exponent eipx does not oscillate strongly.

Returning to the momentum-transfer squared q2, one
obtains

 q2 ’ m2
b � 2mb~q0 
m

2
b �mbP

2
= ��: (6)

Thus, q2 is far from the threshold 
m2
b in the heavy-light

channel, if the conditions (4) and (5) are fulfilled.
Parametrically, the lower part of the physical region of
B! P, V transitions,

 0 
 q2 <m2
b �mbP2= ��; (7)

is accessible to the OPE on the light cone. One encounters
a situation similar to the light-meson LCSR which are
applicable up to q2 � m2

b �mb�, where � � O�1 GeV�
does not scale with mb ! 1. For example, the LCSR with
pion DA’s [2] can be used up to q2 
 14–16 GeV2. For the
B-meson LCSR considered here, the upper limit of the
interval (7) could not be that large, because generally
P2= ��� �. An important case is when q2 is in the vicinity
of zero. Solving Eq. (6) for q2 � 0, one obtains P2


mb

��. With P2 being large but independent of mb, in this
case ~q2 scales with mb ! 1: j~q2j � P2�1� 
� 
mb

��.
The light-cone dominance of the correlation function

allows one to contract the q1 and �q1 fields and use the free-
quark propagator Sq1

�x� � �ih0jq1�x� �q1�0�j0i as a
leading-order approximation. The corresponding diagram
is depicted in Fig. 1(a). We obtain from Eq. (3) (neglecting
for simplicity the light-quark mass mq1

)

 

~F �Bv�ab �p; ~q� � i
Z
d4xeip�x

ix�
2�2�x2�2

��a���b���

	h0j �q2��x�hv��0�j �Bvi; (8)

a convolution of a short-distance part with the matrix
element of the bilocal operator between the vacuum and
Bv state. Expanding the operator �q2��x�hv��0� at x � 0
one encounters, in the generic case 

 1, an infinite series
of matrix elements of local operators, as explained in detail
in [20,21] for the vacuum-pion amplitudes. Instead, one
has to retain in Eq. (8) the matrix element of the bilocal
operator, expanding it around x2 � 0. This procedure
brings the B-meson DA’s into the game. They do not,
however, have a well-defined twist, contrary to the light-
meson DA’s. The definitions of two- and three-particle
B-meson DA’s at the leading order of x2 ! 0 expansion
will be given in the next section.

III. DERIVATION OF LCSR

The sum rules are obtained following the standard pro-
cedure [6], that is, matching the OPE result for the corre-
lation function to the hadronic representation and
employing quark-hadron duality and Borel transformation.
Considering, for definiteness, the case when the current
�q2�aq1 interpolates a pseudoscalar meson P (� or K), we
write the correlation function (1) in a form of the hadronic
dispersion relation in the channel of the light meson:

 F�B�ab �p; q� �
h0j �q2�aq1jP�p�ihP�p�j �q1�bbj �B�PB�i

m2
P � p

2 � . . . ;

(9)

where only the P-meson pole term is shown explicitly, and

 

p

b

q2

q1B

q

(a)

B

(b)

B

(c)

FIG. 1. Diagrams corresponding to the contributions of
(a) two-particle and (b) three-particle B-meson DA’s to the
correlation function (1); (c) one of the O��s� diagrams. Curly
(wavy) lines denote gluons (external currents).
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ellipses indicate the contributions of excited and contin-
uum states. The two hadronic matrix elements in Eq. (9)
are determined, respectively, by the decay constant of P
and by the B! P form factors.

To proceed, the dispersion relation (9) is equated to the
HQET correlation function (8), which will be calculated
using the light-cone OPE:

 F�B�;OPE
ab �p; q� ’ ~F�Bv�;OPE

ab �p; q�mbv�: (10)

After Lorentz decomposition,

 F�B�;OPE
ab �p; q� � lab�p; q�F�B�;OPE�p2; q2� � . . . ;

each invariant amplitude is conveniently represented in a
form of dispersion relation:

 F�B�;OPE�p2; q2� �
1

�

Z 1
�mq1

�mq2
�2
ds

ImF�B�;OPE�s; q2�

s� p2 ;

(11)

where the lower threshold is given by the sum of the light-
quark masses. Furthermore, employing a quark-hadron
duality approximation we equate the P-meson contribution
in Eq. (9) to the part of the dispersion integral (11) limited
from above by the effective threshold sP0 . After Borel
transformation, the LCSR for the B! P matrix element
can be written down in the following generic form:

 

h0j �q2�aq1jP�p�ihP�p�j �q1�bbj �B�PB�ie�m
2
P=M

2

� lab�p; q�
Z sP0

�mq1
�mq2

�2
dse�s=M

2
ImF�B�;OPE�s; q2�

� . . . ; (12)

where the ellipses denote the rest of the Lorentz decom-
position. The derivation of LCSR in the case of a vector
meson V (� or K�) is fully analogous, with V replacing P
in Eqs. (9) and (12). For each combination of currents
listed in Table I, using the definitions of the hadronic
matrix elements given below and decomposing the left-
hand side (l.h.s.) of Eq. (12) in invariant amplitudes, it is
straightforward to obtain a separate sum rule for a given
form factor.

The following standard definitions are used for the decay
constants of pseudoscalar and vector mesons:

 
h0j �q2���5q1jP�p�i � ip�fP;


h0j �q2��q1jV�p�i � �V�mVfV;
(13)

for B! P form factors:

 


hP�p�j �q1��bj �B�p� q�i � 2p�f
�
BP�q

2� � q��f
�
BP�q

2�

� f�BP�q
2��;


hP�p�j �q1	��q�bjB�p� q�i � �q2�2p�� q��

� �m2
B�m

2
P�q��

	
ifTBP�q

2�

mB�mP
; (14)

and for B! V form factors:
 


hV�p�j �q1���1� �5�bj �B�p� q�i

� �i����mB �mV�ABV1 �q
2� � i�2p� q�����q�

	
ABV2 �q

2�

mB �mV
� iq���

�q�
2mV

q2 �A
BV
3 �q

2�

� ABV0 �q
2�� � ����	�

��q�p	
2VBV�q2�

mB �mV
; (15)

with 2mVA
BV
3 �q

2� � �mB �mV�A1�q
2� � �mB �

mV�A
BV
2 �q

2� and ABV0 �0� � ABV3 �0�, and
 


hV�p�j �q1	��q
��1� �5�bj �B�p� q�i

� i����	���q�p	2TBV1 �q
2� � f����m2

B �m
2
V�

� ���q��2p� q��gTBV2 �q
2�

� ���q�
�
q� �

q2

m2
B �m

2
V

�2p� q��

�
TBV3 �q

2�: (16)

In the above, 
 �
���
2
p
�
 � 1� for �0 and �0 (for other

mesons).
In what follows, we derive new LCSR for the B! P, V

form factors listed in Table I. For definiteness, we assume
the following flavor configurations: �B0

d ! ��, �� and
�B0
d !

�K0, �K�0. The sum rules for the remaining form
factors, f0

BP, ABV0 , and TBV2;3 , will be presented elsewhere.
Importantly, in all channels considered in this paper, the
threshold parameters sP;V0 can be obtained from the two-
point sum rules for the decay constants fP;V .

Let us now calculate the right-hand side (r.h.s.) of the
sum rule (12). As explained in the previous section, the
leading-order contribution to the OPE is given by the
diagram in Fig. 1(a). The answer is obtained by decom-
posing the matrix element in Eq. (8) at x2 � 0:
 

h0j �q2��x��x; 0�hv��0�j �Bvi � �
ifBmB

4

Z 1
0
d!e�i!v�x

	

�
�1� v6 �

�
�B
��!�

�
�B
��!� ��

B
��!�

2v � x
x6
�
�5

�
��

(17)

in terms of the B-meson two-particle DA’s �B
��!� and

�B
��!� defined [9,12] in the momentum space. In the

KHODJAMIRIAN, MANNEL, AND OFFEN PHYSICAL REVIEW D 75, 054013 (2007)

054013-4



above, �x; 0� is the path-ordered gauge factor. The variable
!> 0 is the plus component of the spectator-quark mo-
mentum in the B meson. Substituting Eq. (17) in Eq. (8)
and integrating over x, one obtains the invariant amplitudes
F�B�;OPE�p2; q2� which have a simple generic expression at
q2 � 0:

 F�B�;OPE�p2; 0� �
X
n�1;2

Z 1
0

d!�n�!�

��1�!=mB��!mB � p2��n
;

(18)

where the functions �n�!� combinations of the B-meson
DA’s. If one continues the x2 expansion of the matrix
element (17) beyond the leading order, the resulting con-
tributions to F�B�;OPE will be suppressed by additional
powers of the denominator (i.e., by inverse powers of M2

after Borel transformation). We neglect them, having as-
sumed that P2 � �p2 (or M2) is a large scale.
Furthermore, B-meson DA’s are essentially concentrated
around!
 ��, where �� � mB �mb, with the kinematical
limit !< 2 ��. Hence, the denominator in Eq. (18) implic-
itly contains another large scale mB

��. The heavy-mass
scale which reappears in the HQET correlation function
has a kinematical origin: at q2 � 0 the external momenta p
and q are both O�mb=2�, or in other words, as already
mentioned in the previous section, the rescaled virtuality
~q2 � O�mb

���. Finally, to obtain the r.h.s. of Eq. (12), one
transforms the integral in Eq. (18) into a dispersion form,
changing the variable! to s � !mB, performing the Borel
transformation in the variable p2 and replacing the upper
limit by the duality threshold sP;V0 . Importantly, due to the

fact that
���������
sP;V0

q
� mB, only the regions of small momenta

of spectator quark !< sP;V0 =mB, far from the kinematical
threshold !
 ��, are important in the LCSR. As already
mentioned in [7], this situation corresponds to the end-
point mechanism which is realized in heavy-to-light ex-
clusive transitions in the absence of hard-gluon exchanges.

Following the derivation described above, we obtain the
leading-order LCSR for the B! �, � form factors at zero
momentum transfer (q2 � 0), where the u, d-quark masses
are neglected, and the pion mass is put to zero:

 f�B��0� �
fB

f�mB

Z s�0

0
dse�s=M

2
�B
��s=mB�; (19)

 

f�B��0� � f
�
B��0� �

fB
f�mB

Z s�0

0
dse�s=M

2

	

�
m2
B

m2
B � s

�B
��s=mB�

� 2
s

m2
B � s

�B
��s=mB�

� 2
m3
B

�m2
B � s�

2
��B
��s=mB�

�
; (20)

 

fTB��0� �
fB

f�mB

Z s�0

0
dse�s=M

2

�
�B
��s=mB� ��

B
��s=mB�

�
mB

m2
B � s

��B
��s=mB�

�
; (21)

 

VB��0� �
fB�mB �m��

2f�m�mB
em

2
�=M

2
Z s�0

0
dse�s=M

2 m2
B

m2
B � s

	�B
��s=mB�; (22)

 

AB�1 �0� �
fBmB

2f�m��mB �m��
em

2
�=M2

	
Z s�0

0
dse�s=M

2
�B
��s=mB�; (23)

 

AB�2 �0� �
fB

2f�m�

�mB �m��

mB
em

2
�=M2

	
Z s�0

0
dse�s=M

2

�
m2
B

m2
B � s

�B
��s=mB�

� 2
s

m2
B � s

�B
��s=mB�

� 2
m3
B

�m2
B � s�

2
��B
��s=mB�

�
; (24)

 TB�1 �0� �
fB

2f�m�
em

2
�=M2

Z s�0

0
dse�s=M

2
�B
��s=mB�; (25)

where a compact notation,

 

�� B
��!� �

Z !

0
d���B

���� ��
B
�����;

is introduced. The Borel parameter M in the light-meson
channels has typical values around 1 GeV, still M�
�QCD. The first sum rule (19) has already been derived in
[7] (see also [8]), whereas all other sum rules are new. The
LCSR at q2 � 0 and mq1

� 0 have bulky expressions
presented in the Appendix. Substituting mq1

� ms and
replacing s�;�0 ! sK;K

�

0 , one obtains LCSR for the B!
K, K� form factors.

In this paper we neglect O��s� radiative corrections due
to the hard-gluon exchanges between the quark-antiquark
lines [one of the diagrams is shown in Fig. 1(c)]. Their
calculation is inseparable from the nontrivial renormaliza-
tion of B-meson DA’s, which is so far known only for
�B
��!� [19] (for a detailed discussion, see also [11,17]).

As far as the normalization scale of �B
��!� or its inverse

moment

 

1

�B���
�
Z 1

0
d!

�B
��!;��
!

(26)

is concerned, we assume that � ’ M, having in mind that
the Borel scale reflects the average virtuality in the
correlator.
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In addition, we calculate the corrections due to the three-
particle (quark-antiquark-gluon) DA’s of the B meson.
They correspond to the diagram in Fig. 1(b), where a low
virtuality gluon is emitted from the virtual quark and
absorbed in the B meson. The contribution of this diagram
to the correlation function (1) is obtained by contracting
the q1�x� and �q1�0� fields and inserting the one-gluon part
of the quark propagator near the light cone [22]:
 

Sq1
�x; 0; mq1

� �
Z d4p

�2��4
e�ipx

Z 1

0
dvG���vx�

�
vx���

p2 �m2
q1

�
�p6 �mq1

�	��

2�p2 �m2
q1
�2

�
; (27)

where G�� � gsG
a
����

a=2�. As a result, an expression
similar to Eq. (8) emerges with the vacuum-to-B matrix
element containing a nonlocal product of quark, antiquark,
and gluon fields. In the x2 � 0 limit we adopt the following
decomposition of this matrix element into four indepen-
dent three-particle DA’s:
 

h0j �q2��x�G���ux�hv��0�j �B
0�v�i

�
fBmB

4

Z 1
0
d!

Z 1
0
d
e�i�!�u
�v�x

�
�1� v6 �

	

�
�v��� � v������A�!; 
� ��V�!; 
��

� i	���V�!; 
� �
�x�v� � x�v�

v � x

�
XA�!; 
�

�

�x��� � x���
v � x

�
YA�!; 
�

�
�5

�
��
; (28)

where the path-ordered gauge factors on the left-hand side
are omitted for brevity. Multiplying both parts of this
expression by x�, one encounters the definition introduced
in [16]. The DA’s �V , �A, XA, and YA depend on the two
variables !> 0 and 
 > 0 being, respectively, the plus
components of the light-quark and gluon momenta in the
B meson.

Our analysis in this paper is restricted to the four three-
particle DA’s defined in Eq. (28), and to the two-particle
DA’s defined in Eq. (17). One can further expand both
matrix elements near the light cone in powers of x2,
introducing additional DA’s.1 As argued above, their con-
tributions to the correlation function will be power sup-
pressed, at least by inverse powers of M2.

The resulting expressions for the three-particle contri-
butions to LCSR at q2 � 0 are presented in the Appendix.
At q2 � 0 these expressions (which, for brevity, we do not
display) have to be added to the leading-order sum rules

(19)–(25). The new LCSR are sensitive to the normaliza-
tion constants and to the behavior of the B-meson two-
particle (three-particle) DA’s at small ! �!; 
�, and hence
also to the inverse moment �B. For the two-particle DA’s
the behavior at !! 0 is known, and we have at our
disposal models for �B

��!� [9,17,18]. The remaining task
is to establish the behavior of the three-particle DA’s at
small !, 
, and to build a model for them.

IV. THREE-PARTICLE DA’S FROM SUM RULES IN
HQET

As already mentioned, QCD sum rules in HQET were
employed in [9,17] to predict the B-meson two-particle
DA’s �B

��!�. The idea was to introduce a correlation
function with two �q�hv currents, one of them local and
the other one containing the hv and �q fields at a lightlike
separation. The ground Bv-state contribution to the had-
ronic dispersion relation for this correlation function con-
tains the product of the B-meson decay constant and the
nonlocal heavy-to-light matrix element (17). An appropri-
ate choice of the Dirac-structure � allows one to separate
�B
� from �B

�. Matching the B-meson term to the leading
perturbative contribution (the loop diagram) via quark-
hadron duality, one reproduces [9] the behavior of both
DA’s at !! 0: �B

��!� 
! and �B
��!� 
 const, in accor-

dance with general expectations.
Here we use a similar method and derive HQET sum

rules for the B-meson three-particle DA’s in the perturba-
tive loop approximation. The starting object is the corre-
lation function
 

����
� ��; t; u� � i

Z
d4ye�i��v�y�h0jTf �q�tn�

	 �G�	�utn�n
	hv�0�; �hv�y�

	G��	
���5q�y�gj0i; (29)

where the local current containing the effective heavy-
quark, light-antiquark, and gluon fields is correlated with
a generic nonlocal current, with all three fields on the light
cone. We define the lightlike unit vectors n� and �n� (n2 �

�n2 � 0, n � �n � 2) so that v� � �n� � �n��=2; t is an
arbitrary real number, determining the location on the light
cone [that is, tn corresponds to the lightlike interval x in
Eq. (28)] and � is the ‘‘off-shell energy,’’ the HQET analog
of virtuality. The gauge factors between the fields in
Eq. (29) are omitted for brevity; in fact they are inessential
for the perturbative loop approximation. The local current
in (29) is chosen in a convenient scalar form; note that
other choices are also possible.

The correlation function (29), after inserting the com-
plete set of hadronic states, has a pole of the Bv state at
� � �� where �� � mB �mb. Schematically,
 

����
� ��;t;u��

C�
����

Z 1
0
d!

Z 1
0
d
e�i�!�u
�tF�!;
�; (30)

1Recently, a more general decomposition of the three-particle
matrix element (28) was suggested in [23], where one encounters
additional three-particle DA’s. A separate study is needed to
clarify the importance of these amplitudes with respect to the
four three-particle DA’s considered here.
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where C� is proportional to the hadronic matrix element of
the local current in Eq. (29) and to other normalization
constants; since we are only interested in the functional
dependence on ! and 
, this factor does not need to be
specified. F�!; 
� is one of the three-particle DA’s,
�A�!; 
�, �V�!; 
�, XA�!; 
�, YA�!; 
� (or their linear
combination), depending on the choice of the Dirac-
structure in the nonlocal current in Eq. (29). More specifi-
cally, the following correspondence is established:

 � � ���5 ! F � �A; �� ! �V;

	���5 ! �A ��V; n6 �5 ! XA ��A;

i�5 ! YA � XA:

(31)

To proceed, we calculate the spectral density of the
leading-order perturbative contribution to the correlation
function (29), given by the loop diagram in Fig. 2. All three
intermediate lines in this diagram have to be put on shell,
which simplifies the calculation. Substituting free propa-
gators for the effective heavy-quark, light-quark, and gluon
fields, we use Cutkosky rules and obtain a dispersion
relation for the Fig. 2 diagram contribution to the correla-
tion function
 

����;pert
� ��;t;u�� ~c

Z 1
0

ds
s��

Z d4ld4k

�2��8

	e�it�l�uk��n�k�k�n��g��k�n �k�

	��s��l �v�k �v����l2�

	��k2���l0���k0�Tr
�

�
1�v6

2
	���5l6

�
;

(32)

where l and k are the four-momenta of the light-quark and
gluon lines, respectively, and ~c is the constant factor (con-
taining also�s). The integration is conveniently carried out
if one expands these momenta in light-cone components
using the basis of the lightlike vectors n and �n introduced
above:

 k� �
1
2��k � �n�n� � �k � n� �n�� � k?�;

l� �
1
2��l � �n�n� � �l � n� �n�� � l?�:

(33)

The delta functions in Eq. (32) are integrated out, taking
into account the kinematical bounds represented by �
functions. At the end, two integrations are left, with the
variables ! � �l � n� and 
 � �k � n�, that is, the plus
components of the quark and gluon loop momenta, respec-
tively. Matching the result of this calculation to the had-
ronic dispersion relation with the pole term (30) and
employing quark-hadron duality for the excited and con-
tinuum states with an effective threshold ~s0, we perform
the Borel transformation. Comparing the dependence on
the variables ! and 
 on both sides, the following sum
rules for three-particles DA’s are obtained, in the perturba-
tive loop approximation:
 

�A�!; 
� � �V�!; 
�

� r
2
Z ~s0

�
�!�=2
dse��s� ���=��2s�!� 
�2

	��2~s0 �!� 
� � . . . ; (34)

 

XA�!;
� � r
�2!� 
�
Z ~s0

�
�!�=2
dse��s� ���=�

	 �2s�!� 
�2��2~s0�!� 
� � . . . ; (35)

 

YA�!; 
� � r

Z ~s0

�
�!�=2
dse��s�

���=��2s�!� 
�2

	

�
�
�2s�!� 
�

3
� 3!� 


�

	��2~s0 �!� 
� � . . . (36)

with an equal coefficient r emerging from the constant
factors C� and ~c in Eqs. (30) and (32), respectively.
Importantly, in the loop approximation, �V�!; 
� and
�A�!; 
� are equal, while XA and YA have different forms.
If one takes the local limit t! 0 of the correlation function
(29), the resulting two-point sum rules for the normaliza-
tion constants of the DA’s yield

R
1
0 d!d
�A�!; 
� �R

1
0 d!d
�V�!; 
�.
In fact, �A�!; 
� and �V�!; 
� have independent nor-

malization conditions,

 

Z 1
0
d!

Z 1
0
d
�A�!; 
� �

�2
E

3
;

Z 1
0
d!

Z 1
0
d
�V�!; 
� �

�2
H

3

(37)

where the constants �E and �H are determined by the
matrix elements of different local operators [9]. The func-
tions X and Y are normalized to zero, but can also have
different normalization coefficients.

The differences for all four DA’s manifest themselves if
in the sum rules (34)–(36) one takes into account the
condensate contributions (indicated by ellipses), sup-
pressed by the inverse powers of the Borel scale �. In
fact, in the correlation functions with nonlocal currents
the usual approximation of local quark and gluon conden-

 

FIG. 2. Perturbative loop diagram for the correlation function
(29). The points connected with the dashed line (the thick point)
represent the vertex of the nonlocal (local) current.

FORM FACTORS FROM LIGHT-CONE SUM RULES WITH . . . PHYSICAL REVIEW D 75, 054013 (2007)

054013-7



sates is too crude and models of nonlocal condensates are
usually employed [9,17]. We have investigated only the
local limit of the correlation function (29) and the resulting
sum rules for �E and �H. The condensate contributions
indeed have different sizes in these sum rules, but their
influence on the normalization constants is moderate, as
compared with the loop contribution. The details of this
analysis will be presented elsewhere. Note that the sum
rules for �E, �H derived in [9] are based on a different,
‘‘nondiagonal’’ correlator with one three-particle and one
two-particle current. These sum rules predict

 �2
E � �0:11� 0:06� GeV2;

�2
H � �0:18� 0:07� GeV2;

(38)

not very far from each other, indicating that the approxi-
mation �E � �H which follows from (34) can be adopted
within the uncertainty intervals in Eq. (38).

The most important prediction of the sum rules (34)–
(36) is the behavior at !, 
! 0 given by the perturbative
loop contribution:

 �A�!; 
� 
�V�!; 
� 
 
2;

XA�!; 
� 
 
�2!� 
�; YA 
 
:
(39)

In our previous paper [7], we followed a different, more
qualitative way, making a comparison between the pion
and B-meson three-particle DA’s in the asymptotic regime,
and obtained

 ��A ��V� 
 ��2
E � �

2
H�!


2; (40)

which turns out to be a small correction, neglected here.
This correction does not contradict the behavior indicated
in Eq. (39) but cannot be simply extracted from the sum
rules (34) without going beyond the loop approximation.

We suggest two models for the three-particle DA’s. The
first one is obtained from the sum rules (34)–(36) in the
local-duality (LD) �! 1 limit:
 

�LD
A �!; 
� � �LD

V �!; 
�

�

�
35�2

E

4~s4
0

�

2

�
1�

!� 

2~s0

�
3
��2~s0 �!� 
�;

XLD
A �!; 
� �

�
35�2

E

4~s4
0

�

�2!� 
�

�
1�

!� 

2~s0

�
3

	��2~s0 �!� 
�;

YLD
A �!; 
� � �

�
35�2

E

16~s4
0

�


�
1�

!� 

2~s0

�
3
�2~s0 � 13!� 3
�

	��2~s0 �!� 
�: (41)

The uniform constant factor in the above expressions is
fixed by the normalization conditions (37), and we assume
that �E � �H. Note that XA�!; 
� and YA�!; 
� in Eqs. (35)
and (36) are normalized to zero, as they should be.

It is natural to combine the above three-particle DA’s
with �B

��!� obtained in the same local-duality limit from

the HQET sum rule for a correlator of the nonlocal and
local quark-antiquark currents:

 �B;LD
� �!� �

3!

2~s2
0

�
1�

!
2~s0

�
��2~s0 �!�;

�B;LD
� �!� �

3

2~s0

�
1�

!
2~s0

�
2
��2~s0 �!�;

(42)

where �B;LD
� has already been derived in [17].

For the second model of the three-particle DA’s, we
combine the small !, 
 behavior (39) with an exponential
falloff:
 

�A�!; 
� � �V�!; 
� �
�2
E

6!4
0


2e��!�
�=!0 ;

XA�!; 
� �
�2
E

6!4
0


�2!� 
�e��!�
�=!0 ;

YA�!; 
� � �
�2
E

24!4
0


�7!0 � 13!� 3
�e��!�
�=!0 :

(43)

The analogous ansatz for the two-particle DA’s was sug-
gested in [9]:

 �B
��!� �

!

!2
0

e��!=!0�; �B
��!� �

1

!0
e��!=!0�; (44)

so that �B � !0.
After the models are formulated, it is important to check

if they obey the constraints derived in [16] (see also [12])
from the QCD equations of motion (adapted to HQET) in
the form of two equations for the two-particle DA’s:

 !
d�B
��!�
d!

��B
��!� � I�!�;

�!� 2 ����B
��!� �!�

B
��!� � J�!�;

(45)

where I�!� and J�!� are the ‘‘source’’ terms due to the
three-particle DA’s:
 

I�!� � 2
d
d!

Z !

0
d�

Z 1
!��

d




@
@

��A��; 
� ��V��; 
��;

J�!� � �2
d
d!

Z !

0
d�

Z 1
!��

d



��A��; 
� � XA��; 
��

� 4
Z !

0
d�

Z 1
!��

d



@�V��; 
�

@

: (46)

We immediately notice that I�!� � 0 in both models (41)
and (43). In other words, the relation [12]

 �B
��!� �

Z 1
!
d!

�B
��!�
!

(47)

does not receive gluon corrections in the approximation
adopted here. Importantly, within this approximation, also
J�0� � 0; hence the behavior �B

��!� 
! at !! 0 is not
modified, contrary to a general expectation [16].
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In addition, due to the relations between the matrix
elements of local operators, the moments of DA’s have to
fulfill [9] the following equations2:

 h!i� �
4
3

��; h!i� �
2
3

��;

h!2i� � 2 ��2 � 2
3�

2
E �

1
3�

2
H; h!2i� �

2
3

��2 � 1
3�

2
H;

(48)

where h!ni� �
R
1
0 d!���!�!

n.
For the DA’s of the local-duality model (41) and (42),

only the first equation in (45) is valid. Hence, the two-
particle DA’s acquire corrections determined by the three-
particle DA’s:

 �B;LD
� �!� ! �B;LD

� �!� � ��B;LD
� �!�: (49)

Instead of substituting Eq. (49) into Eqs. (45) and solving
the system of two equations for the functions ��B;LD

� �!�, it
is easier to use the ansatz obtained in [16]:
 

�B;LD
� �!� � ��B;LD

� �!� � �B;WW
� �!� �

!

2 ��
��!�;

�B;LD
� �!� � ��B;LD

� �!� � �B;WW
� �!� �

2 ���!

2 ��
��!�

�
J�!�
!

; (50)

where �B;WW
� �!� are the solutions of Eqs. (45) without the

‘‘source’’ terms I�!� and J�!� [in the Wandzura-Wilsczek
(WW) approximation]:

 �B;WW
� �!� �

!

2 ��2
��2 ���!�;

�B;WW
� �!� �

2 ���!

2 ��2
��2 ���!�;

(51)

and ��!� has a complicated expression via I�!� and J�!�
which can be found in [16]. We have calculated J�!� for
the local-duality model (41) and the resulting function
��!�. The results for �B;LD

� �!� � ��B;LD
� �!� obtained

from Eqs. (50) are shown in Fig. 3. The corrected DA’s
differ significantly from the WW approximation; in par-
ticular, �1=�B�WW � 1= �� is shifted to 1=�B �
1= ��� 7�2

E=�2 ��~s2
0�, while the positive moments satisfy

Eqs. (48) [by construction of the ansatz (50)]. After in-
cluding the gluon corrections, the functions �B

��!� be-
come smoother and are shifted towards lower !’s, as
expected.

Turning to the exponential model and substituting
Eqs. (43) for �A and XA into Eq. (46), we obtain

 J�!� �
2�2

E

3!4
0

!�!� 2!0�e��!=!0�: (52)

In this case, if the conditions [9]

 !0 �
2
3

��; �2
E � �2

H �
3
2!

2
0 �

2
3

��2 (53)

are satisfied, both equations in (45) can be solved, and the
solution for the two-particle DA’s has the exponential form
(44). Under the same conditions, the relations (48) between
the moments are also fulfilled, as already noticed in [9].
Hence, the three-particle DA’s described by the exponen-
tial model (43) do not induce additional corrections to the
ansatz (44). We conclude that the combination of Eqs. (43)
and (44), together with the conditions (53), form a self-
consistent model of two- and three-particle B-meson DA’s.

Comparing the exponential model with the local-duality
one introduced above, we find that numerically, in the
region of integration in LCSR, !< s��K;�;K

��
0 =mB, the

two models for �B
� are almost indistinguishable (if �E �

�H and �B are the same), as can be seen from Fig. 3. For
that reason, in the numerical analysis of LCSR, we only
consider the exponential model.

In the region of small ! the exponential ansatz (44) for
�B
��!� is numerically close to the more elaborated model

suggested in [17]:

 �B
��!;� � 1 GeV�

�
4!

��B�1�!
2�

�
1

1�!2 �
2�	B � 1�

�2 ln�!�
�
;

(54)

provided !0 � �B. In the above, ! is in GeV units and the
parameters �B and 	B are determined from HQET sum
rules including the QCD radiative and nonperturbative
corrections. Also, the model for �B

��!� suggested in [18]
at small ! contains the same exponential component as in
Eq. (44).

V. HEAVY-MASS LIMIT OF LCSR

In this section we discuss the power counting in the
B-meson LCSR, in particular, the dependence on the
heavy-mass scale mB 
mb at q2 � 0 (at large energies
of the final P, V mesons).

Let us remind the reader that the concept of B-meson
DA’s in its present form is only valid in the framework of
HQET. In deriving the sum rules, we actually started from
the formal 1=mb expansion (2) of the correlation function
(1) and further used the HQET correlation function (3),
expanding it in B-meson DA’s. Hence, beyond the adopted
approximation, there remain some unaccounted 1=mb cor-
rections which contribute to the ‘‘systematical’’ uncer-
tainty of our method. These corrections can be studied by
expanding both the heavy-light current and the B-meson
state in Eq. (1) beyond the leading order in HQET.

As explained in Secs. II and III, the relevant scale in the
light-cone OPE for the HQET correlation function is the
virtuality P2 in the light-meson channel, or the correspond-
ing Borel parameter M2. This scale is chosen to be large

2Note that after including renormalization effects in DA’s,
which so far have only been studied for �B

� [19], the positive
moments of DA’s logarithmically diverge, and have to be regu-
larized in some way.
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with respect to �QCD but is independent of mb. In LCSR
for the pion form factors [21,24,25] the higher-twist com-
ponents of pion DA’s, including the three-particle (quark-
antiquark-gluon) DA’s, yield contributions that are nor-
mally suppressed by the inverse Borel scale. The absence
of a well-defined twist in B-meson DA’s makes the situ-
ation for the LCSR obtained here quite different. The
contributions of the three-particle DA’s do not reveal a
general 1=M2 suppression. Note, however, that only the
leading-order terms of the x2 expansion for both quark-
antiquark and quark-antiquark-gluon matrix elements (17)
and (28) are taken into account. It is natural to expect that,
if one continues the light-cone expansion further, the 1=M2

hierarchy will emerge in full scale.
The main source of 1=mb suppression in B-meson LCSR

is related to the second large scale mb! present in the
denominators of the correlation function [see Eq. (18)]. In
the sum rules (19)–(25) this scale manifests itself in the
dependence of DA’s on �s=mB�, bounded by the duality
interval s=mB < s0=mB. The power of 1=mb suppression is
entirely determined by the !! 0 (!, 
! 0) infrared
behavior of the B-meson two- (three-) particle DA’s, con-
tributing to the sum rule. This resembles the 1=mb expan-
sion of the light-meson LCSR where the end-point
behavior of the pion or �-meson DA’s provides additional
1=mb suppression.

Expanding the LCSR (19)–(25) at mb ! 1, and adding
the three-particle contributions given in the Appendix, one
easily recovers the well-known relations [26] valid in the
limit of the large light-meson energy (EP;V 
mb=2):

 f�BP�0� � �; fTBP�0� �
�
1�

mP

mB

�
�;

V�0� �
�
1�

mV

mB

�
�?; A1�0� �

mB

mB �mV
�?;

A2�0� �
�

1�
mV

mB

��
�? �

2mV

mB
�k

�
; T1�0� � �?:

(55)

For the first two universal form factors the following ex-
pressions in terms of B-meson DA’s are obtained:

 � �
f̂B

fPm
3=2
B

em
2
P=M

2
Z sP0

0
dse�s=M

2
�B
��0�; (56)

 

�? �
f̂B

2fVmVm
3=2
B

em
2
V=M

2
Z sV0

0
dse�s=M

2

�
s
d�B
��!�
d!

��������!�0

�
Z 1

0

d




�V�0; 
�
�
; (57)

where the B-meson decay constant is rescaled in a standard
way: fB � f̂B=

�������
mb
p

. In the above, we neglected the light-
quark masses m1;2 but left mP � 0 for generality. Deriving
Eq. (57) we have also taken into account that the integral
contributing to the r.h.s.,

 

Z 1
0

d



��A�0; 
� � XA�0; 
�� � �

1

2
J�0� � 0i;

in our model. The third universal form factor �k enters
Eq. (55) for A2 with anO�1=mB� factor; hence, it cannot be
cleanly separated from the other 1=mb corrections to the
LCSR (24) for A2. One has to obtain a separate sum rule for
A0, but we do not dwell on that here.

The 1=m3=2
b limit for all form factors, evident from

Eqs. (56) and (57), is consistent with the heavy-mass limit
obtained from the light-meson LCSR. The only exception
is the heavy-mass limit f�B� � f

�
B� 
O�1=m

5=2
b �, obtained

from Eq. (20), and different from the 1=m3=2
b behavior

predicted from LCSR with the pion DA’s [27].
Our main observation is that the universal B! P form

factor � does not receive contributions from the three-
particle B-meson DA’s, while for the B! V form factors
the three-particle Fock components in the B-meson con-
tribute at the leading power O�1=m3=2

b � with a universal
term. This result agrees with the expectations of SCET
discussed in [28]. Also, in the factorization formula for the
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form factor � derived in [29], the quark-antiquark-gluon
DA’s contribute at the leading order.

VI. NUMERICAL RESULTS

To perform the numerical analysis of the new LCSR, we
use the exponential model (43) and (44) of B-meson DA’s
and adopt the interval [17]

 �B�1 GeV� � 460� 110 MeV (58)

for the inverse moment of �B
�. The parameters �2

E � �2
H

are determined from Eq. (53), and are somewhat larger
than in Eq. (38). In addition, having in mind the uncertainty
of the model, we allow the parameters �E � �H to vary
within �50% at fixed �B, so that the constraints following
from equations of motion remain valid. The B-meson
decay constant fB � 180� 30 MeV obtained from the
two-point sum rule in O��s� is used, similar to [2]. This
is consistent with the O��s� accuracy of �B. This matching
of precisions is, however, not yet complete, in the absence
of the O��s� corrections to LCSR.

The interval of the Borel parameter adopted here, M2 �
1:0� 0:5 GeV2, is optimal for the two-point sum rules in
the light-meson channels [6,20], as well as for LCSR for
the pion form factors [21,24,25]. Hence, the normalization
scale of �B is consistent with the average virtuality in the
correlation function. The input for various light-meson
channels is listed in Table II. As already mentioned, the
duality-threshold parameter in each channel is fixed by
adjusting the two-point sum rule [taken with O��s� accu-
racy] to the experimentally measured decay constant. Note
that the same values of s�0 and s�0 were used in LCSR for
the pion electromagnetic [21,24] and ���, ���� [25]
form factors, respectively.

For the channels with strange mesons, we adopt
ms�1 GeV� � 130� 10 MeV which agrees, e.g., with
the recent QCD sum rule estimates [33].

To demonstrate the stability of the LCSR predictions
with respect to the Borel parameter variation, as well as the
role of three-particle corrections, we plot the numerical
results for the two representative form factors f�B��0� and
VB��0� in Fig. 4. The contribution of the three-particle
DA’s to the sum rule for VB� is substantially larger than
the analogous contribution to the sum rule for f�B�; this
observation is consistent with different 1=mb behavior of

the three-particle corrections, as discussed in the previous
section. Furthermore, to illustrate the sensitivity of
B-meson LCSR to the value of the inverse moment �B,
we plot in Fig. 5 our prediction for fB��0� as a function of
this input parameter.

The form factors at zero momentum transfer calculated
with the input specified above are collected in the second
column of Table III. To estimate the theoretical uncertain-
ties, one usually adds linearly or in quadrature the uncer-
tainties originating from separate variations of the input
parameters. The intervals presented in Table III are ob-
tained with a different procedure. The central value for
each form factor is fitted to the set of LCSR predictions
obtained by simultaneously scanning all input parameters
(�B, �2

E;H, fB,M2, fP;V , andms) within the adopted ranges.
The errors attributed to the fitted values are the usual 1	
deviations. The estimated uncertainties to a large extent
originate from the interval of �B; hence they are larger for
B! V form factors than for the B! P form factors,
because the former (latter) mainly depend on �B0

� �0� 

��2
B [�B

��0� 
 �
�1
B ]. Simultaneously, the ratios of the

form factors have much smaller uncertainties; in other
words, the variations within the intervals presented in
Table III are correlated. For example, the lower (upper)
boundary of the interval for TB��BK

��
1 �0� corresponds to the

lower (upper) boundaries for VB��BK
���0�, AB�;�BK

��
1 �0�, and

AB��BK
��

2 �0�.
In Table III the predictions of the B-meson LCSR are

compared with the form factors obtained [3,5] from the
conventional light-meson LCSR. One has to keep in mind
that the latter sum rules are more precise, because they
include NLO corrections and are based on the well-
developed twist expansion. Hence, the observed agreement
between the predictions of two different methods is en-
couraging, possibly indicating that the unaccounted O��s�
and power corrections to the new B-meson LCSR are not
large.

One more comment is in order. As already mentioned, in
the B-meson and light-meson LCSR, quark-hadron duality
is employed differently, in the light-meson and B-meson
channels, respectively. Hence, the difference between the
predictions of two LCSR for one and the same form factor
can be interpreted as a quantitative estimate of the system-
atic uncertainty caused by the duality ansatz. With the
current accuracy of the B-meson LCSR, we can only assess
the upper limits for such uncertainties, by comparing the
form factors in the second and third columns of Table III.
To substantiate these estimates, one has to enhance the
accuracy of the B-meson LCSR, e.g., by including the
perturbative corrections and narrowing the ranges of the
major input parameters, such as �B.

The B! �, � form factors calculated at q2 � 0 are
plotted in Figs. 6 and 7. Note that to obtain the scalar
form factor f0

B��q
2� we have simply combined our predic-

tions for f�B��q
2� and f�B��q

2� � f�B��q
2�. We evaluate the

TABLE II. Decay constants of light mesons and the threshold
parameters extracted from the corresponding two-point QCD
sum rules.

Meson Decay constant [30] Threshold parameter

� f� � 130:7� 0:1 MeV s�0 � 0:7 GeV2 [6,20]
K fK � 159:8� 1:4� 0:44 MeV sK0 � 1:05 GeV2 [31]
� f� � 209� 2 MeV s�0 � 1:6 GeV2 [6,20]
K� fK� � 217� 5 MeV sK

�

0 � 1:7 GeV2 [32]
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form factors at 0< q2 < 10 GeV2. The adopted range
corresponds to the expected validity interval (7) where
the upper boundary is taken at P2 
M2. The light-meson
LCSR are applicable [2,3] at larger momentum transfers,
up to 14–16 GeV2. Note that the intervals presented in
Table III include theoretical uncertainties, estimated as
explained above, whereas the solid lines displayed in
Figs. 6 and 7 have been evaluated at the central values of
all parameters; hence, at q2 � 0 these lines slightly deviate
from the central points of the intervals. The estimated
uncertainties of the form factors at q2 � 0, not shown
here, are at the same level and have the same correlations
as the uncertainties at q2 � 0 discussed above.

Comparison with the results of the light-meson LCSR
[3,5] reveals an agreement also at q2 � 0, as can be seen
from Figs. 6 and 7, taking into account the uncertainties of
both methods as well. To quantify the difference between
the predictions of the two different types of LCSR at q2 �

0, we have fitted our results at 0< q2 < 10 GeV2 to the
parametrization [34] used in [3,5]; e.g., for the f�B��q

2�

form factor, we employ

 f�B��q
2� �

r1

1� q2=m2
B�
�

r2

1� q2=m2
fit

: (59)

Since the adopted range of q2 is rather narrow and the
theoretical uncertainties are relatively large, it is difficult to
fit all three parameters in Eq. (59) without producing an
unphysically low mass mfit of the second (effective) pole.
The situation is improved if one adopts the value of mfit �
6:38 GeV from [3] and fits only the residues of the two
poles in (59). The result, r1 � 0:93 and r2 � �0:68, has to
be compared with r1 � 0:744 and r2 � �0:486 obtained
in [3]. The analogous fit of B-meson LCSR for the form
factor VB��q2� yields (again at the fixed [5] mass mfit �
6:19 GeV) the residues r1 � 1:10 and r2 � �0:80, very
close to r1 � 1:045 and r2 � �0:721 obtained in [5]. A
more detailed study of parametrizations at q2 � 0, includ-
ing all B! P, V form factors, as well as the applications to

TABLE III. The B! �, K and B! �, K� form factors cal-
culated in this work, compared with the predictions of the light-
meson LCSR obtained in [3,5], respectively. For the latter, the
second uncertainty of the B! K (K�) form factors is due to the
first Gegenbauer moment in the kaon (K�) DA, where
aK1 �1 GeV� � 0:05� 0:03 [aK

�

1 �1 GeV� � 0:10� 0:07] is
taken.

Form factor This work LCSR with light-meson DA’s

f�B��0� 0:25� 0:05 0:258� 0:031
f�BK�0� 0:31� 0:04 0:301� 0:041� 0:008
fTB��0� 0:21� 0:04 0:253� 0:028
fTBK�0� 0:27� 0:04 0:321� 0:037� 0:009
VB��0� 0:32� 0:10 0:323� 0:029
VBK

�
�0� 0:39� 0:11 0:411� 0:033� 0:031

AB�1 �0� 0:24� 0:08 0:242� 0:024
ABK

�

1 �0� 0:30� 0:08 0:292� 0:028� 0:023
AB�2 �0� 0:21� 0:09 0:221� 0:023
ABK

�

2 �0� 0:26� 0:08 0:259� 0:027� 0:022
TB�1 �0� 0:28� 0:09 0:267� 0:021
TBK

�

1 �0� 0:33� 0:10 0:333� 0:028� 0:024
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heavy-light semileptonic and radiative decays, are subjects
of a future study.

Furthermore, to illustrate the SU�3�-violation effects
predicted from the B-meson LCSR, we have calculated

the ratios

 

f�BK�0�
f�B��0�

� 1:27� 0:07; (60)
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TBK
�

1 �0�

TB�1 �0�
� 1:22� 0:13: (61)

Importantly, these ratios are much less dependent on the
B-meson parameters than the individual form factors. Our
predictions are in agreement with the results obtained from
the LCSR using DA’s of strange and nonstrange light
mesons; e.g., Eq. (60) can be compared with
f�BK�0�=f

�
B��0� � 1:36�:12

�:09 obtained in [31] and Eq. (61)
with the most recent result [35]: TBK

�

1 �0�=TB�1 �0� � 1:17�
0:09. These are very important checks, because the new
sum rules are independent of the SU�3�-violating
Gegenbauer moments of the kaon and K�.

In addition, returning to the B! � transition, we pre-
dict the combination

 

fB
f�B��0��B

� 1:56� 0:17; (62)

which determines the coefficient of the hard-scattering
contribution to the B! �� amplitude in the QCD facto-
rization approach (for a recent analysis, see e.g. [36]). Note
that within our method this ratio is practically independent
of �B and fB and is, to a large extent, determined by the
parameters of the pion channel.

Summarizing, in this paper we have obtained a set of
new QCD sum rules relating various B! P, V transition
form factors to the universal light-cone DA’s of the B
meson. The contributions of the three-particle DA’s to the
new LCSR have been calculated. In addition, we studied
the B-meson three-particle DA’s, employing QCD sum
rules in HQET, and have obtained a realistic exponential
model of these DA’s.

The correlation functions with an on-shell B meson and
a light-quark current allow many other applications to the

heavy-light transitions, by simply changing the quantum
numbers of the light-quark current. One does not need to
install different light-meson DA’s, and the two-point sum
rules in the light-meson channels provide necessary infor-
mation on the duality thresholds. With the interval of the
inverse moment �B from the QCD sum rules in HQET
[9,17], the numerical results obtained in this paper, includ-
ing the SU�3�-violating ratios, provide a nontrivial check
of the new method with respect to the light-meson LCSR.

The new B-meson LCSR deserve further development.
In this paper only the leading, zeroth order in �s of the
light-cone OPE has been taken into account. To complete
the LCSR derivation at the NLO level, one has to calculate
the QCD radiative corrections to the correlation function,
involving the renormalization effects. In addition, further
light-cone expansion of the two- and three-particle heavy-
light matrix elements is desirable, in order to clarify the
role of yet unaccounted B-meson DA’s in generating 1=mb
and/or 1=M2 corrections to the sum rules. To obtain the
necessary elements of these DA’s, one can use the tech-
nique of HQET sum rules.
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APPENDIX

Here the expressions for the LCSR at q2 � 0 and m1 �
m � 0 are presented (m2 � 0):

(i) B! P form factors of the vector transition current,

 

f�BP�q
2� �

fBmB

fP

�Z 	0�q2;s0�

0
d	 exp

�
�s�	; q2� �m2

P

M2

��
�	2m2

B

�	2m2
B �m

2 � q2 �
B
��	mB�

�

�
1�

�	2m2
B

�	2m2
B �m

2 � q2

�
�B
��	mB� �

2 �	�m2 � q2�mB

� �	2m2
B �m

2 � q2�2
��B
��	mB�

�
� �f�BP�q

2; s0;M
2�

�
; (A1)

 

f�BP�q
2� � f�BP�q

2� �
fBmB

fP

�Z 	0�q2;s0�

0
d	 exp

�
�s�	; q2� �m2

P

M2

��
�m� 2	 �	mB�mB

�	2m2
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2 � q2 �
B
��	mB�

�

�
1�

	
�	
�
�m� 2	 �	mB�mB

�	2m2
B �m

2 � q2

�
�B
��	mB� � 2mB

�
�	�m� 2	 �	mB�mB
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B �m

2 � q2�2
�

�	� �	�

�	2m2
B �m

2 � q2

�

	 ��B
��	mB�

�
��f�BP�q

2; s0;M
2�

�
; (A2)

(ii) B! P form factors of the tensor current,
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fTBP�q
2� �

fB�mB �mP�m2
B

fP��m2
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2
P� � q

2�
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1
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�
��B
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(iii) B! V form factors of the vector current,
 

VBV�q2� �
fBm2

B

2fVmV
�mB�mV�

�Z 	0�q2;s0�

0
d	exp

�
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��
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��B
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�
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2�

�
; (A4)

(iv) B! V form factors of the axial current,

 ABV1 �q
2� �

fBm
3
B

2fVmV�mB �mV�

�Z 	0�q2;s0�

0
d	 exp

�
�s�	; q2� �m2
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��
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�
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(v) B! V form factors of the tensor current,
 

TBV1 �q
2� �

fBm
2
B

2fVmV
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d	 exp
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where, in order to compactify the above expressions, we use the dimensionless integration variable 	 � !=mB and
the following notations: �	 � 1� 	,

 s�	; q2� � 	m2
B �

m2 � 	q2

�	
; 	0�q2; s0� �

m2
B � q

2 � s0 �
����������������������������������������������������������������������
4�m2 � s0�m2

B � �m
2
B � q

2 � s0�
2

q
2m2

B

;

so that, at m � 0 and q2 � 0, s�	; 0� � 	m2
B and 	0�0; s0� � s0=m2

B.
In the above, �f�BP, �f�BP, �fTBP, �VBV , �ABV1 , �ABV2 , and �TBV1 denote the contributions of the B-meson three-particle

DA’s. We obtain the following generic formula for these correction (�F � �f�BP, �f�BP, etc.):
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where
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�
1�

m2 � q2

�	2m2
B

�
�1
; (A9)

and the integrals over the three-particle DA’s multiplying
the inverse powers of the Borel parameter 1=M2�n�1� with
n � 1, 2, 3 are defined as
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Z 1
	mB�!

d




	�C�F;�A�n �	; u; q2��B
A�!; 
�

� C�F;�V�n �	; u; q2��B
V�!; 
�

� C�F;XA�n �	; u; q2� �XBA�!; 
�

� C�F;YA�n �	; u; q2� �YBA�!; 
��ju��	mB�!�=


(A10)

where
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The nonvanishing coefficients entering Eq. (A10) are
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