第十六届粒子物理、核物理和宇宙学交叉学科前沿问题研讨会 南开大学,天津,2023年7月1-3日

CP violation in beauty decays 谢跃红(华中师范大学)

Courtesy Symmetry Magazine

Outline

- CP violation and CKM mechanism
- Time-dependent CP violation & detection
- B^0 CP violating phase 2β
- B_s^0 CP violating phase ϕ_s
- CKM angle γ
- Summary

Discoveries of P & CP violation

CKM mechanism

$\mathcal{L}_{ ext{SM}}$	=	$\mathcal{L}_G(\psi, W, \phi)$	+ $\mathcal{L}_H(\phi)$ +	$\mathcal{L}_Y(\psi,\phi)$
		kinetic	Higgs potential	Yukawa IA
		energy +	\rightarrow spontaneous	\rightarrow fermion
		gauge IA	symmetry	masses
			breaking	

EWSB & diagonalisation of Yukawa mass matrix \Rightarrow CKM quark mixing matrix

Four parameters (A, λ, ρ, η) to be measured in data.

 $\eta \neq 0 \Rightarrow$ source of CP violation (CPV) in quark sector.

Unitarity of CKM matrix

B decays plays huge roles in measurements of sides (rates, B_a^0 mixing) and angles (CP asymmetries)

Over-constraining CKM matrix

- Measurements from tree-level processes provide the SM benchmark
 - $\succ \gamma \text{ in } B \rightarrow Dh$

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

 $\succ V_{ub}$ in $B \to \pi l^- \bar{\nu}$

- Measurements from loop processes provide sensitivity to NP
 - $\succ \beta \text{ in } B^0 \rightarrow J/\psi K_S^0$
 - > Mixing parameters Δm_d and Δm_s
 - CPV in kaon mixing

通过全局拟合确定CKM参数,考察不同测量之间一致性检验CKM机制

1.0

Great successes

Open questions in flavour

$$\begin{pmatrix} V_{ud} & V_{us} & v_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ v_{td} & V_{ts} & V_{tb} \end{pmatrix} \xrightarrow{\text{CKM prediction}} \frac{n_B - n_{\overline{B}}}{n_{\gamma}} \sim 10^{-20}$$

□ What is the dynamic origin of the patterns of quark mass and flavour mixing?

- □ Is there any source of CP violation beyond the Yukawa couplings?
 - \Rightarrow New physics beyond the SM is expected at very high energy scale

Time-dependent CP violation & detection

Neutral *B* mixing and CPV

 $\square \text{ Neutral } B \text{ mesons: } B^0 = (\overline{b}d) \quad \overline{B}^0 = (b\overline{d}) \quad B^0_s = (\overline{b}s) \quad B^0_s = (b\overline{s})$

 $\square B_q^0 - \overline{B}_q^0 (q = d, s) \text{ oscillation}$ $\square B_q - \overline{B}_q^0 (q = d, s) \text{ oscillation}$ $\square B_L = p|B_q\rangle + q|\overline{B}_q\rangle$ $B_H = p|B_q\rangle - q|\overline{B}_q\rangle$

 $\Delta m_q = m_H - m_L, \Delta \Gamma_q = \Gamma_L - \Gamma_H$

Measuring TD-CPV

$$A_{CP}(t) = \frac{\Gamma(\bar{B}_q^0(t) \to f_{CP}) - \Gamma(B_q^0(t) \to f_{CP})}{\Gamma(\bar{B}_q^0(t) \to f_{CP}) + \Gamma(B_q^0(t) \to f_{CP})} = \eta_f \frac{C\cos(\Delta m_q t) + S\sin(\Delta m_q t)}{\cosh\frac{\Delta\Gamma_q t}{2} + A_\Delta \sinh\frac{\Delta\Gamma t}{2}}$$

 $S \neq 0$: mixing induced CPV

 $C \neq 0$: direct CPV in decay

 η_f : CP eigen-value

Requirements

- > Identify the initial flavour *B* or \overline{B}
- > Reconstruct the proper decay time t
- ▶ If the final state is a mixture of CP-even and CP-odd states, such as $B_s^0 \rightarrow J/\psi\phi$ and $B_s^0 \rightarrow \phi\phi$, perform angular analysis

Experimental effects

$$\Delta m_s = 17.7 \text{ ps}^{-1}$$

$$\sigma_t = 50 \text{ fs}$$

$$\omega = 0.2$$

$$\epsilon(t) = 1/(1 + \exp(-2t))$$

 \Box Times resolution σ_t

$$S \rightarrow e^{-\frac{(\Delta m\sigma_t)^2}{2}} S = D_{\text{time}} S$$

$$D_{\text{time}} \sim 0.7 \text{ for } \Delta m_s = 17.7 \text{ ps}^{-1} \text{ with } \sigma_t = 50 \text{ fs}$$

~0.7 for $\Delta m_d = 0.5 \text{ ps}^{-1}$ with $\sigma_t = 1.5 \text{ ps}^{-1}$

□ Wrong tag probability ω $S \rightarrow (1 - 2\omega)S$

□ Decay-time dependent efficiency $\epsilon(t)$ $P(t) \rightarrow \epsilon(t) P(t)$

Obtain info on σ_t , ω and $\epsilon(t)$ from data using control channels

Ongoing beauty experiments

- Flavour experiment at LHC
- All *b* and *c* hadron species
- Excellent vertexing, tracking, PID
- 9 fb⁻¹ @ 7, 8, 13 TeV

- SuperB factory at SuperKeKB
- Low background e^+e^- collision
- B^0, B^{\pm}
- 362 fb⁻¹ @ Υ(4S)

LHCb data taking in Run 1&2

之前的LHCb物理结果大多数基于2017年前采集的数据。 此次报告的结果均利用当前全部可用数据进行了更新。

The LHCb approach

- Large boost from pp colision $\beta \gamma \sim 10, L \sim 1 \text{ cm}$
- Silicon vertex system $\sigma_t \sim 45 \text{ fs}$
- Flavour tagging: info from other *B* & fragmentation particles $\epsilon_{tag}(1-2\omega)^2) \sim 5\%$

The Belle II approach

- Asymmetric e^+e^- collision $\beta \gamma = 0.28, \Delta z \sim 200 \,\mu m$
- Silicon vertex detector $\sigma_t \sim 1.5 \text{ ps}$
- Flavour tagging: info from other B $\epsilon_{tag}(1-2\omega)^2) \sim 40\%$

PRD 107 (2023) L091102 new!

 $\Delta m_d = 0.516 \pm 0.008 \pm 0.005 \text{ ps}^{-1}$ $\tau_{B^0} = 1.499 \pm 0.013 \pm 0.005 \text{ ps}$

Belle: $\Delta m_d = 0.509 \pm 0.004 \pm 0.005 \text{ ps}^{-1}$

B^0 CP violating phase 2β

 B^0 mixing phase $\phi_d = 2\beta^{\text{eff}}$ B factory flagship!

Golden mode $B^0 \rightarrow J/\psi K_S^0$

 $A_{CP}(t) \approx -\sin 2\beta \sin(\Delta m_d t)$

- 1981: I. I. Bigi & A. Santa pointed out the expectation of large CP violation in $B^0 \rightarrow J/\psi K_S^0$ decay
- 1987: P. Oddone proposed construction of asymmetric *B* factories
- 1999: BABAR and BELLE started running

History

First measurements confirmed CKM prediction

Babar, PRL 87 (2001) 091801

Status before 2023

- Belle: $\sin 2\beta = 0.67 \pm 0.02 \pm 0.01$ PRL 108 (2012) 171802
- BaBar: $\sin 2\beta = 0.69 \pm 0.03 \pm 0.01$ PRD 79 (2009) 072009
- LHCb Run 1: $\sin 2\beta = 0.760 \pm 0.034$ JHEP 11 (2017) 170
- \rightarrow Recent update using Run2 data follows

黄金道 $B^0 \rightarrow J/\psi K_S^0$

 $b \rightarrow c\bar{c}s$ 过程联合

0.9

S

First Belle II result of $sin 2\beta$

 $B_d^0 \to J/\psi K_S^0$

 $B^+ \rightarrow J/\psi K^+$ for test of method

 $\sin 2\beta = 0.720 \pm 0.062 \pm 0.016$, $C = 0.094 \pm 0.044 \stackrel{+0.042}{_{-0.017}}$

Belle: $\sin 2\beta = 0.67 \pm 0.02 \pm 0.01 (772 M B\overline{B})$

LHCb Run2 result of sin2β LHCb-paper-2023-013 new!

Study of $B^0 \to J/\psi(\to \mu\mu)K_S^0$, $B^0 \to J/\psi(\to ee)K_S^0$, $B^0 \to \psi(2S)K_S^0$ using Run2 data

Run2: $\sin 2\beta = 0.716 \pm 0.013 \pm 0.008$, $C = 0.012 \pm 0.012 \pm 0.003$

Run1: $\sin 2\beta = 0.760 \pm 0.034$

Run1+Run2: $\sin 2\beta = 0.724 \pm 0.014$

New world average of $\sin 2\beta$

- LHCb has achieved the most precise single measurement, improving WA by 35%
- Consistent with SM prediction: $\sin 2\beta = 0.731^{+0.029}_{-0.016}$ (CKMFitter)

Projection for $sin 2\beta$

B_s^0 CP violating phase ϕ_s

B_s^0 mixing phase ϕ_s

LHCb flagship!

$\square \phi_s$: sensitive probe of NP in mixing

 $\phi_s^{\rm SM} \approx -2\beta_s = -0.037 \pm 0.001$ rad (UTFit)

 $\Box \text{ Golden mode: } B_s^0 \to J/\psi K^+K^-$

 $A_{CP}(t) \propto \eta_f \sin \phi_s \sin(\Delta m_s t)$

- CP eigenvalue of final state $\eta_f = (-1)^L$
- Angular analysis to separate CP even and odd states

□ Major players: LHCb, ATLAS, CMS

Previous LHC analysis of $B_s^0 \rightarrow J/\psi K^+ K^$ used Run1+2015+2016 data

 $\phi_s^{J/\psi KK} = -0.081 \pm 0.032$ rad EPJC 79 (2019) 706 \rightarrow New result using also 2017+2018 data

Run2 $B_s^0 \rightarrow J/\psi\phi$ analysis

LHCb-paper-2023-016 new!

LHCb Run2 result of ϕ_s

No sign of polarization dependence

No sign of CP violation

Run2: $\phi_s^{J/\psi KK} = -0.039 \pm 0.022 \pm 0.006$ rad

Run1: $\phi_s^{J/\psi KK} = -0.058 \pm 0.049 \pm 0.006$ rad

Run1 + Run2: $\phi_s^{J/\psi KK} = -0.044 \pm 0.020$ rad

	Parameters	Values (stat. unc. only)	
•	ϕ^0_s [rad]	-0.034 ± 0.023	
	$\phi_s{}^{\parallel}-\phi_s^0$ [rad]	-0.002 ± 0.021	
	${\phi_s}^\perp - \phi_s^0$ [rad]	$-0.001 {}^{+ 0.020}_{- 0.021}$	
	$\phi_s{}^S-\phi_s^0$ [rad]	$0.022 {}^{+ 0.027}_{- 0.026}$	
	$ \lambda^0 $	$0.969 \substack{+ 0.025 \\ - 0.024}$	
	$ \lambda^{\parallel}/\lambda^{0} $	$0.982 {}^{+ 0.055}_{- 0.052}$	
	$ \lambda^{\perp}/\lambda^{0} $	$1.107^{+0.082}_{-0.076}$	
	$ \lambda^S/\lambda^0 $	$1.121 {}^{+ 0.084}_{- 0.078}$	

New world average of ϕ_s

• $\phi_s^{J/\psi KK} = -0.050 \pm 0.017$ rad \rightarrow improved by 23%

- $\phi_s^{c\bar{c}s} = -0.039 \pm 0.016$ rad \rightarrow improved by 15%
- Consistent with the prediction of Global fits assuming SM:³ $\phi_s^{\text{CKMfitter}} \approx (-0.0368^{+0.0006}_{-0.0009}) \text{ rad}, \ \phi_s^{\text{UTfitter}} = -0.0370 \pm 0.0010 \text{ rad}$

Projection for ϕ_s

New CPV result in $B_s^0 \rightarrow \phi \phi$

arXiv:2304.06198 **new!**

- Penguin-mediated $b \rightarrow s\bar{s}s$ decay
- Sensitive to NP in mixing and penguin diagrams
- Tiny CPV expected in SM: $\phi_s^{s\bar{s}s} = 0.00 \pm 0.02$ rad
- Time-dependent angular analysis as for $B_s^0 \rightarrow J/\psi\phi$

Previous Run1+2015+2016: $\phi_s^{s\bar{s}s} = -0.073 \pm 0.115 \pm 0.027$ rad JHEP 12 (2019) 155

Adding 2016+2018

Run1+Run2: $\phi_s^{s\bar{s}s} = -0.074 \pm 0.069$ rad

No sign of CP violation

CKM angle γ

γ measurement methods

□ Measure γ through **b** → **u** and **b** → **c** interference in $B \rightarrow Dh$ decays, which leads to direct CP violation.

Can use many *B* decay modes

 $\begin{array}{l} \succ B^+ \to Dh^+, B^+ \to D^*h^+, B^+ \to \\ DK^{*+}, B^+ \to Dh^+\pi^+\pi^- \\ \geq B^0 \to DK^{*0}, B^0 \to D^{\mp}\pi^{\pm} \\ \geq B_s^+ \to D_s^{\mp}K^{\pm}, B_s^+ \to D_s^{\mp}K^{\pm}\pi^+\pi^- \end{array}$

\Box And many D^0 decay modes

- > 2-body: $D^0 \rightarrow K^+\pi^-$, $D^0 \rightarrow h^+h^-$
- > 3-body: $D^0 \rightarrow K_S^0 h^+ h^-$
- 4-body: $D^0 → K^- π^+ π^- π^+, D^0 → K^- K^+ π^- π^+$

Previous status

D B factories each: $\sigma_{\gamma} \approx 15^{\circ}$

BaBar: $\gamma = (70 \pm 18)^{\circ}$ PRD 87 (2015) 052 015BELLE: $\gamma = (73^{+13}_{-15})^{\circ}$ arXiv: 1301.2033

LHCb previous combination of many decay modes: $\sigma_{\gamma} \approx 4^{\circ}$

LHCb: $\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$ JHEP 12 (2021) 141

An updated combination recently performed to include several new measurements

New γ results with $B \rightarrow Dh$ decays

$\Box \gamma \text{ in } B^{\pm} \rightarrow D[K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}]h^{\pm}$ arXiv:2209.03692

 $\Gamma_{B^{\pm} \to D[K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\pm}]K^{\pm}} \propto r_{K3\pi}^{2} + (r_{B}^{K})^{2} + 2r_{K3\pi}r_{B}^{K}R_{K3\pi}\cos(\delta_{B}^{K} + \delta_{K3\pi} \pm \gamma)$ $\Gamma_{B^{\pm} \to D[K^{\pm} \pi^{\mp} \pi^{\mp} \pi^{\pm}]K^{\pm}} \propto 1 + (r_{K3\pi}^{2}r_{B}^{K})^{2} + 2r_{K3\pi}r_{B}^{K}R_{K3\pi}\cos(\delta_{B}^{K} - \delta_{K3\pi} \pm \gamma),$

- Decay rates measured in bins of $K3\pi$ phase space
- Bin-by-bin strong-phase difference $\delta_{K3\pi}$ and coherence factor $R_{K3\pi}$ are measured by CLEO-c and BESIII in quantum-correlated $D\overline{D}$ decays

 $\gamma = \left(54.8^{+3.8}_{-5.8} \stackrel{+0.6}{_{-0.6}} \stackrel{+6.7}{_{-4.3}}\right)^{\circ}$ Uncertainty of external inputs dominates!

$$\Box \gamma \text{ in } B^{\pm} \rightarrow D[h^{\pm}h'^{\mp}\pi^{0}]h^{\pm} \text{ JHEP 07 (2022) 099}$$
• Evidence for CPV in $B^{\pm} \rightarrow [\pi^{\pm}K^{\mp}\pi^{0}]_{D}K^{\pm}$

 $oldsymbol{\gamma} = ig(56^{+24}_{-19}ig)^\circ$

 $\begin{array}{c} 45 \\ 40 \\ 9 \ fb^{-1} \\ B^{-} \rightarrow [\pi^{-}K^{+}\pi^{0}]_{D}K^{-} \\ 40 \\ 9 \ fb^{-1} \\ B^{-} \rightarrow [\pi^{-}K^{+}\pi^{0}]_{D}K^{-} \\ B^{+} \rightarrow [\pi^{+}K^{-}\pi^{0}]_{D}K^{+} \\ + Data \\ B^{\pm} \rightarrow [\pi^{+}K^{+}\pi^{0}]_{D}K^{\mp} \\ Combinatoric \\ B^{0}_{2} \rightarrow [\pi^{\mp}K^{+}\pi^{0}]_{D}K^{\mp} \\ Combinatoric \\ B^{0}_{2} \rightarrow [\pi^{\mp}K^{+}\pi^{0}]_{D}K^{\mp} \\ B \rightarrow DX \text{ low-mass part. reco} \\ \end{array}$

New γ combination

Determine γ from CP violation measurements in $B \rightarrow Dh$

- Many *B* and *D* decay modes
- D decay amplitudes and strong phases from CLEO-c and BESIII

γ measurement at Belle II

Model-independent analysis of $B^{\pm} \rightarrow D[K_S^0 h^+ h^-]h^{\pm}$

- Data from Belle (711 fb^{-1}) and Belle II (128 fb^{-1})
- Bin-by-bin D^0 strong-phase parameter c_i and s_i from CLEO-c and BESIII

$$N_{i}(B^{0}) = h^{B^{0}} \left[F_{-i} + (x_{+}^{2} + y_{+}^{2})F_{i} + 2\kappa\sqrt{F_{i}F_{-i}}(x_{+}c_{i} - y_{+}s_{i}) \right], \qquad x_{\pm} \equiv r_{B^{0}}\cos(\delta_{B^{0}} \pm \gamma),$$

$$N_{i}(\overline{B}^{0}) = h^{\overline{B}^{0}} \left[F_{i} + (x_{-}^{2} + y_{-}^{2})F_{-i} + 2\kappa\sqrt{F_{i}F_{-i}}(x_{-}c_{i} + y_{-}s_{i}) \right], \qquad y_{\pm} \equiv r_{B^{0}}\sin(\delta_{B^{0}} \pm \gamma).$$

$$\gamma = \phi_3 = (78.4 \pm 11.4(\text{stat}) \pm 0.5(\text{syst}) \pm 1.0(\text{ext}))^\circ$$

JHEP 02 (2022) 063

D⁰ parameters from BESIII

mode	Para.	Ref.
$D^0 \to K^0_S \pi^+ \pi^-$	Strong phase	PRD 101 (2020) 112002
$D^0 \to K^0_S K^+ K^-$	Strong phase	PRD 102 (2020) 052008
$D^0 \to K^+ \pi^-$	Strong phase	EPJC 82 (2022) 1009
$D^0 \to K^- \pi^+ \pi^+ \pi^-$	Strong phase	arXiv:2103.05988
$D^0 \to K^+ K^- \pi^+ \pi^-$	Strong phase	arXiv:2212.06489
$D^0 \to K^+ K^- \pi^+ \pi^-$	CP-even fraction	arXiv:2305.03975
$D^0 \to \pi^+\pi^-\pi^+\pi^-$	CP-even fraction	arXiv:2208.10098

Used for *D* **parameters**

To be used

- → Current BESIII measurements of D^0 strong-phase parameters used 3 fb⁻¹ of $\psi(3770) \rightarrow D\overline{D}$ data
- → BESIII will accumulate 20 fb⁻¹ of $\psi(3770) \rightarrow D\overline{D}$ data this year
- > Significant improvements in D^0 decay parameters are expected

Summary

- LHCb has achieved unprecedented precision in study of beauty CP violation, pushing flavour physics into a new era
- Belle II is ramping up and producing interesting physics results

