Introduction to Partonic Structure of Hadrons

Jianhui Zhang

香 港 中 文大 學（深 圳）
The Chinese University of Hong Kong，Shenzhen

QCD and Medium to High Energy Nuclear Physics Summer School， 2023．07．14

Introduction

- Hadrons (baryons, mesons) are composite particles with quarks and gluons being their fundamental constituents
- First evidence of the composite nature of the proton

Otto Stern

$$
\begin{aligned}
\mu_{p} & =g_{p}\left(\frac{e \hbar}{2 m_{p}}\right) \\
g_{p} & =2.792847356(23) \neq 2!
\end{aligned}
$$

- Elastic e-p scattering maps out the charge and magnetization distribution of the proton
 in 1961

Introduction

\bigcirc Hadrons (baryons, mesons) are composite particles with quarks and gluons being their fundamental constituents

- Deep-inelastic scattering accesses the momentum density of the proton's fundamental constituents via knockout reactions

- Discovery of spin-1/2 quarks and partonic structure of the proton

Nobel prize in 1990

Theoretical fools for hadron structure

- What have we learnt from non-relativistic systems such as atoms?
- A quantum mechanical system is described by its wave function $|\psi\rangle$, which is determined from Schrödinger equation
- Physical observables are usually sensitive to the modulus square of the wave function $\mid\left.\left\langle\left.\langle\mid \psi\rangle\right|^{2}=\right| \psi(x)\right|^{2}$, where the phase information is washed out
- The complete information of the system can be obtained by measuring correlations of wave functions or the density matrix. For a pure state it is defined as

$$
\rho=|\psi\rangle\langle\psi|
$$

- In coordinate space, we have

$$
\langle x| \rho\left|x^{\prime}\right\rangle==\langle x \mid \psi\rangle\left\langle\psi \mid x^{\prime}\right\rangle=\psi(x) \psi^{*}\left(x^{\prime}\right)
$$

Theoretical tools for hadron structure

- The Fourier transform of the density matrix provides an alternative description of a quantum mechanical system. It is called the Wigner function/distribution

$$
W(\mathbf{r}, \mathbf{p})=\int \frac{d^{3} \mathbf{R}}{(2 \pi)^{3}} e^{-i \mathbf{p} \cdot \mathbf{R}} \psi^{*}\left(\mathbf{r}-\frac{\mathbf{R}}{2}\right) \psi\left(\mathbf{r}+\frac{\mathbf{R}}{2}\right)
$$

- It is the quantum analogue of the classical phase-space distribution. It is a real function,

$$
W^{*}(\mathbf{r}, \mathbf{p})=W(\mathbf{r}, \mathbf{p})
$$

but not positive-definite, and cannot be regarded as a probability distribution

- Nevertheless, physical observables can be computed by taking the average

$$
\langle O(\mathbf{r}, \mathbf{p})\rangle=\int d^{3} \mathbf{r} d^{3} \mathbf{p} W(\mathbf{r}, \mathbf{p}) O(\mathbf{r}, \mathbf{p})
$$

with the operator being appropriately ordered

Theoretical tools for hadron structure

- The Fourier transform of the density matrix provides an alternative description of a quantum mechanical system. It is called the Wigner function/distribution

$$
W(\mathbf{r}, \mathbf{p})=\int \frac{d^{3} \mathbf{R}}{(2 \pi)^{3}} e^{-i \mathbf{p} \cdot \mathbf{R}} \psi^{*}\left(\mathbf{r}-\frac{\mathbf{R}}{2}\right) \psi\left(\mathbf{r}+\frac{\mathbf{R}}{2}\right)
$$

- Integrating over coordinate or momentum does yield positivedefinite density functions

$$
\int d^{3} \mathbf{p} W(\mathbf{r}, \mathbf{p})=|\psi(\mathbf{r})|^{2}=\rho(\mathbf{r}), \quad \int d^{3} \mathbf{r} W(\mathbf{r}, \mathbf{p})=|\psi(\mathbf{p})|^{2}=n(\mathbf{p})
$$

- The former represents the spatial distribution of matter (e.g., charge distribution), while the latter represents the density distribution of its constituents in momentum space
- They provide two types of quantities unraveling the microscopic structure of matter

Theoretical tools for hadron structure

- The spatial distribution $\rho(\mathbf{r})=|\psi(\mathbf{r})|^{2}$ can be probed through elastic scattering of electrons, photons, etc., off the target, where one measures the elastic form factor $F(\Delta)$ defined as

$$
\begin{aligned}
\rho(\mathbf{r}) & =\int d^{3} \boldsymbol{\Delta} e^{i \boldsymbol{\Delta} \cdot \mathbf{r}} F(\boldsymbol{\Delta}) \\
\frac{d \sigma}{d \Omega} & =\left(\frac{d \sigma}{d \Omega}\right)_{\text {point }}|F(\boldsymbol{\Delta})|^{2}
\end{aligned}
$$

- The momentum density can be probed through inelastic knockout scattering, where one measures the structure function related to the momentum density

$$
n(\mathbf{p})=\int \frac{d^{3} \mathbf{r}_{1} d^{3} \mathbf{r}_{2}}{(2 \pi)^{6}} e^{i \mathbf{p} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)} \rho\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$

- These two observables are complementary. The former contains spatial distribution but not velocity information of the constituents, while for the latter it is the opposite

Nucleon form factors

- The spatial distribution and momentum density can be generalized to relativistic systems described by quantum field theory
- Take the nucleon as an example. The spatial distribution can be probed by its elastic form factors. For example, the electromagnetic form factor is given by
$\left\langle p_{2}\right| j^{\mu}(0)\left|p_{1}\right\rangle=\bar{U}\left(p_{2}\right)\left[\gamma^{\mu} F_{1}\left(\Delta^{2}\right)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 M_{N}} F_{2}\left(\Delta^{2}\right)\right] U\left(p_{1}\right), \quad j^{\mu}(0)=\sum_{f} Q_{f} \bar{\psi}_{f}(0) \gamma^{\mu} \psi_{f}(0)$
- $F_{1}\left(\Delta^{2}\right), F_{2}\left(\Delta^{2}\right)$ are called Dirac and Pauli form factors. They are related to the Sachs electric and magnetic form factors by

$$
G_{E}\left(\Delta^{2}\right)=F_{1}\left(\Delta^{2}\right)-\frac{\Delta^{2}}{4 M_{N}^{2}} F_{2}\left(\Delta^{2}\right), \quad G_{M}\left(\Delta^{2}\right)=F_{1}\left(\Delta^{2}\right)+F_{2}\left(\Delta^{2}\right)
$$

which correspond to the charge and magnetization distribution in the Breit frame (the initial and final nucleons have $\mathbf{p}_{1}=-\mathbf{p}_{2}$)

Nucleon form factors

- The spatial distribution and momentum density can be generalized to relativistic systems described by quantum field theory
- Take the nucleon as an example. The spatial distribution can be probed by its elastic form factors. For example, the electromagnetic form factor is given by
$\left\langle p_{2}\right| j^{\mu}(0)\left|p_{1}\right\rangle=\bar{U}\left(p_{2}\right)\left[\gamma^{\mu} F_{1}\left(\Delta^{2}\right)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 M_{N}} F_{2}\left(\Delta^{2}\right)\right] U\left(p_{1}\right), j^{\mu}(0)=\sum_{f} Q_{f} \bar{\psi}_{f}(0) \gamma^{\mu} \psi_{f}(0)$
- This is also reflected from the relation to the charge and magnetic moment of the nucleon

$$
\begin{gathered}
Q \equiv \int \mathrm{~d}^{3} r j^{0}(r), \quad \mu \equiv \int \mathrm{d}^{3} r[r \times j(r)] \\
\frac{\langle p| Q|p\rangle}{\langle p \mid p\rangle}=F_{1}(0), \quad \frac{\langle p| \mu|p\rangle}{\langle p \mid p\rangle}=\frac{s}{M_{N}}\left(F_{1}(0)+F_{2}(0)\right)
\end{gathered}
$$

- One can sandwich different current operators in the nucleon state, yielding different information about the nucleon structure

Nucleon form factors

- In particular, the axial-vector current helps to reveal the nucleon spin structure

$$
\begin{gathered}
\left\langle p_{2}\right| A^{\mu}(0)\left|p_{1}\right\rangle=\bar{U}\left(p_{2}\right)\left[\gamma^{\mu} \gamma_{5} G_{A}\left(\Delta^{2}\right)+\frac{\gamma_{5} \Delta^{\mu}}{2 M_{N}} G_{P}\left(\Delta^{2}\right)\right] U\left(p_{1}\right) \\
A^{\mu}(0)=\bar{\psi}_{f}(0) \gamma^{\mu} \gamma_{5} \psi_{f}(0)
\end{gathered}
$$

$-G_{A}\left(\Delta^{2}\right), G_{P}\left(\Delta^{2}\right)$ are the axial and (induced) pseudoscalar form factor

- In analogy with the vector case, the axial charge is defined as the zero momentum transfer limit of $G_{A}\left(\Delta^{2}\right)$

$$
g_{A}=G_{A}\left(\Delta^{2}=0\right)
$$

- The isovector combination g_{A}^{u-d} is an important parameter dictating the strength of weak interactions of nucleons
- It can be well determined in neutron beta decay experiments
- Ideal for benchmark lattice calculations of nucleon structure
\bigcirc Disconnected contributions cancel

Nucleon form factors from lattice QCD

- The only systematically improvable tool to study nonperturbative phenomena of hadrons is lattice QCD
- Calculate physical observables from the path integral $\langle 0| O(\bar{\psi}, \psi, A)|0\rangle=\frac{1}{Z} \int \mathscr{D} A \mathscr{D} \bar{\psi} \mathscr{D} \psi e^{i S(\bar{\psi}, \psi, A)} O(\bar{\psi}, \psi, A)$ in Euclidean space $t \rightarrow-i \tau, \quad e^{i S_{M}} \rightarrow e^{-S_{E}}$
- Recover physical limit
$m_{\pi} \rightarrow m_{\pi}^{\text {phys }}, a \rightarrow 0, L \rightarrow \infty$

Nucleon form factors from lattice QCD

- Lattice calculation of nucleon axial charge:
- Consider the nucleon 2- and 3-point correlation functions at zero momentum (Fourier transform factors reduce to 1)

$$
\begin{aligned}
\mathbf{C}_{\alpha \beta}^{2 \mathrm{pt}}(t) & =\sum_{\mathbf{x}}\langle 0| \chi_{\alpha}(t, \mathbf{x}) \bar{\chi}_{\beta}(0, \mathbf{0})|0\rangle, & \mathcal{O}_{\Gamma}(x) & =\bar{q}(x) \Gamma q(x) \\
\mathbf{C}_{\Gamma ; \alpha \beta}^{3 \mathrm{pt}}(t, \tau) & =\sum_{\mathbf{x}, \mathbf{x}^{\prime}}\langle 0| \chi_{\alpha}(t, \mathbf{x}) \mathcal{O}_{\Gamma}\left(\tau, \mathbf{x}^{\prime}\right) \bar{\chi}_{\beta}(0, \mathbf{0})|0\rangle & \Gamma & =\gamma_{i} \gamma_{5}
\end{aligned}
$$

- with the nucleon interpolating operator

$$
\chi(x)=\epsilon^{a b c}\left[q_{1}^{a T}(x) C \gamma_{5} \frac{\left(1 \pm \gamma_{4}\right)}{2} q_{2}^{b}(x)\right] q_{1}^{c}(x)
$$

For a given flavor, quark contraction yields

Connected

Disconnected

Nucleon form factors from lattice QCD

- Lattice calculation of nucleon axial charge:
- Consider the nucleon 2- and 3-point correlation functions at zero momentum (Fourier transform factors reduce to 1)

$$
\begin{aligned}
\mathbf{C}_{\alpha \beta}^{2 \mathrm{pt}}(t) & =\sum_{\mathbf{x}}\langle 0| \chi_{\alpha}(t, \mathbf{x}) \bar{\chi}_{\beta}(0, \mathbf{0})|0\rangle, & \mathcal{O}_{\Gamma}(x) & =\bar{q}(x) \Gamma q(x) \\
\mathbf{C}_{\Gamma ; \alpha \beta}^{3 \mathrm{pt}}(t, \tau) & =\sum_{\mathbf{x}, \mathbf{x}^{\prime}}\langle 0| \chi_{\alpha}(t, \mathbf{x}) \mathcal{O}_{\Gamma}\left(\tau, \mathbf{x}^{\prime}\right) \bar{\chi}_{\beta}(0, \mathbf{0})|0\rangle & & \Gamma=\gamma_{i} \gamma_{5}
\end{aligned}
$$

- with the nucleon interpolating operator

$$
\chi(x)=\epsilon^{a b c}\left[q_{1}^{a T}(x) C \gamma_{5} \frac{\left(1 \pm \gamma_{4}\right)}{2} q_{2}^{b}(x)\right] q_{1}^{c}(x)
$$

For a given flavor, quark contraction yields

Nucleon form factors from lattice QCD

- Lattice calculation of nucleon axial charge:
- Consider the nucleon 2- and 3-point correlation functions at zero momentum (Fourier transform factors reduce to 1)

$$
\begin{aligned}
\mathbf{C}_{\alpha \beta}^{2 \mathrm{pt}}(t) & =\sum_{\mathbf{x}}\langle 0| \chi_{\alpha}(t, \mathbf{x}) \bar{\chi}_{\beta}(0, \mathbf{0})|0\rangle, & \mathcal{O}_{\Gamma}(x) & =\bar{q}(x) \Gamma q(x) \\
\mathbf{C}_{\Gamma ; \alpha \beta}^{3 \mathrm{pt}}(t, \tau) & =\sum_{\mathbf{x}, \mathbf{x}^{\prime}}\langle 0| \chi_{\alpha}(t, \mathbf{x}) \mathcal{O}_{\Gamma}\left(\tau, \mathbf{x}^{\prime}\right) \bar{\chi}_{\beta}(0, \mathbf{0})|0\rangle & \Gamma & =\gamma_{i} \gamma_{5}
\end{aligned}
$$

- with the nucleon interpolating operator

$$
\chi(x)=\epsilon^{a b c}\left[q_{1}^{a T}(x) C \gamma_{5} \frac{\left(1 \pm \gamma_{4}\right)}{2} q_{2}^{b}(x)\right] q_{1}^{c}(x)
$$

For a given flavor, quark contraction yields

Disconnected

Equivalent to

Nucleon form factors from lattice QCD

- Lattice calculation of nucleon axial charge:
- Consider the nucleon 2- and 3-point correlation functions at zero momentum (Fourier transform factors reduce to 1)

$$
\begin{aligned}
\mathbf{C}_{\alpha \beta}^{2 \mathrm{pt}}(t) & =\sum_{\mathbf{x}}\langle 0| \chi_{\alpha}(t, \mathbf{x}) \bar{\chi}_{\beta}(0, \mathbf{0})|0\rangle, & \mathcal{O}_{\Gamma}(x) & =\bar{q}(x) \Gamma q(x) \\
\mathbf{C}_{\Gamma ; \alpha \beta}^{3 \mathrm{pt}}(t, \tau) & =\sum_{\mathbf{x}, \mathbf{x}^{\prime}}\langle 0| \chi_{\alpha}(t, \mathbf{x}) \mathcal{O}_{\Gamma}\left(\tau, \mathbf{x}^{\prime}\right) \bar{\chi}_{\beta}(0, \mathbf{0})|0\rangle & \Gamma & =\gamma_{i} \gamma_{5}
\end{aligned}
$$

- The nucleon charge is given by

$$
\langle N(p, s)| \mathcal{O}_{\Gamma}^{q}|N(p, s)\rangle=g_{\Gamma}^{q} \bar{u}_{s}(p) \Gamma u_{s}(p) \quad \sum_{s} u_{s}(\mathbf{p}) \bar{u}_{s}(\mathbf{p})=\not p+m_{N}
$$

- To extract the charge, we need the projected correlation functions

$$
\begin{aligned}
C^{2 \mathrm{pt}}(t) & =\left\langle\operatorname{Tr}\left[\mathcal{P}_{2 \mathrm{pt}} \mathbf{C}^{2 \mathrm{pt}}(t)\right]\right\rangle \\
C_{\Gamma}^{3 \mathrm{pt}}(t, \tau) & =\left\langle\operatorname{Tr}\left[\mathcal{P}_{3 \mathrm{pt}} \mathbf{C}_{\Gamma}^{3 \mathrm{pt}}(t, \tau)\right]\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{P}_{2 \mathrm{pt}}=\left(1+\gamma_{4}\right) / 2 \\
& \mathcal{P}_{3 \mathrm{pt}}=\mathcal{P}_{2 \mathrm{pt}}\left(1+i \gamma_{5} \gamma_{3}\right)
\end{aligned}
$$

Nucleon form factors from lattice QCD

- Lattice calculation of nucleon axial charge:
- Consider the nucleon 2- and 3-point correlation functions at zero momentum (Fourier transform factors reduce to 1)

$$
\begin{aligned}
\mathbf{C}_{\alpha \beta}^{2 \mathrm{pt}}(t) & =\sum_{\mathbf{x}}\langle 0| \chi_{\alpha}(t, \mathbf{x}) \bar{\chi}_{\beta}(0, \mathbf{0})|0\rangle, & \mathcal{O}_{\Gamma}(x) & =\bar{q}(x) \Gamma q(x) \\
\mathbf{C}_{\Gamma ; \alpha \beta}^{3 \mathrm{pt}}(t, \tau) & =\sum_{\mathbf{x}, \mathbf{x}^{\prime}}\langle 0| \chi_{\alpha}(t, \mathbf{x}) \mathcal{O}_{\Gamma}\left(\tau, \mathbf{x}^{\prime}\right) \bar{\chi}_{\beta}(0, \mathbf{0})|0\rangle & \Gamma & =\gamma_{i} \gamma_{5}
\end{aligned}
$$

- Two-state fits for the projected 2- and 3-point correlation functions

$$
\begin{aligned}
& C^{2 \mathrm{pt}}\left(t_{f}, t_{i}\right)= \\
& \quad\left|\mathcal{A}_{0}\right|^{2} e^{-M_{0}\left(t_{f}-t_{i}\right)}+\left|\mathcal{A}_{1}\right|^{2} e^{-M_{1}\left(t_{f}-t_{i}\right)}, \\
& C_{\Gamma}^{3 \mathrm{pt}}\left(t_{f}, \tau, t_{i}\right)= \\
& \quad\left|\mathcal{A}_{0}\right|^{2}\left(\langle 0| \mathcal{O}_{\Gamma}|0\rangle e^{-M_{0}\left(t_{f}-t_{i}\right)}+\right. \\
& \quad\left|\mathcal{A}_{1}\right|^{2}\langle 1| \mathcal{O}_{\Gamma}|1\rangle e^{-M_{1}\left(t_{f}-t_{i}\right)}+ \\
& \mathcal{A}_{0} \mathcal{A}_{1}^{*}\langle 0| \mathcal{O}_{\Gamma}|1\rangle e^{-M_{0}\left(\tau-t_{i}\right)} e^{-M_{1}\left(t_{f}-\tau\right)}+ \\
& \quad \mathcal{A}_{0}^{*} \mathcal{A}_{1}\langle 1| \mathcal{O}_{\Gamma}|0\rangle e^{-M_{1}\left(\tau-t_{i}\right)} e^{-M_{0}\left(t_{f}-\tau\right)},
\end{aligned}
$$

Nucleon form factors from lattice QCD

- Lattice calculation of nucleon axial charge:

Bhattacharya et al, PRD 16,

Nucleon form factors from lattice QCD

- Lattice calculation of nucleon axial charge:
- Renormalization constant

ID	Z_{A}	Z_{A} / Z_{V}	$Z_{V} g_{V}^{u-d}=1$
a12	0.95(3)	1.045(09)	
a09	0.95(4)	1.034(11)	
a06	0.97(3)	$1.025(09)$	

- To compare with experimental measurements, we need to extrapolate to the continuum $(a \rightarrow 0)$, physical pion mass ($m_{\pi}=m_{\pi \text {,phys }}$) and the infinite volume limit $(L \rightarrow \infty)$

$$
g_{A}^{u-d}\left(a, m_{\pi}, L\right)=c_{1}+c_{2} a+c_{3} m_{\pi}^{2}+c_{4} m_{\pi}^{2} e^{-m_{\pi} L}
$$

Nucleon form factors from lattice QCD

- Lattice calculation of nucleon axial charge:

b

Chang et al, Nature 18,

Parton distribution functions

- Parton distribution functions describe momentum densities of partons inside the nucleon, can be accessed in inclusive DIS
- Scattering amplitude

$$
\mathscr{M}=\bar{u}\left(k^{\prime}\right)\left(-i e \gamma_{\mu}\right) u(k) \frac{-i}{q^{2}}\langle X| J^{\mu}|P\rangle
$$

Differential cross section can be written as

$$
\frac{d \sigma}{d \Omega d E}=\frac{\alpha^{2}}{Q^{4}} \frac{E^{\prime}}{E} \ell_{\mu \nu} W^{\mu \nu}
$$

- with leptonic and hadronic tensors
$l_{\mu \nu}=4 e^{2}\left(k_{\mu} k_{\nu}^{\prime}+k_{\mu}^{\prime} k_{\nu}-g_{\mu \nu} k \cdot k^{\prime}\right), \quad W_{\mu \nu}=\frac{1}{4 \pi} \sum_{X}\langle P| J_{\mu}|X\rangle\langle X| J_{\nu}|P\rangle(2 \pi)^{4} \delta^{4}\left(P+q-P_{X}\right)$
General decomposition of $W_{\mu \nu}$ in terms of structure functions

$$
\begin{array}{rlrl}
W_{\mu \nu} & =-\left(g_{\mu \nu}-\frac{q_{\mu} q_{v}}{q^{2}}\right) F_{1}\left(x_{B}, Q^{2}\right)+\frac{1}{p \cdot q}\left(p_{\mu}-q_{\mu} \frac{p \cdot q}{q^{2}}\right)\left(p_{v}-q_{v} \frac{p \cdot q}{q^{2}}\right) F_{2}\left(x_{B}, Q^{2}\right) & & Q^{2}=-q^{2} \\
& +i M_{p} \varepsilon^{\mu v \rho \sigma} q_{\rho}\left[\frac{S_{\sigma}}{p \cdot q} g_{1}\left(x_{B}, Q^{2}\right)+\frac{(p \cdot q) S_{\sigma}-(S \cdot q) p_{\sigma}}{(p . q)^{2}} g_{2}\left(x_{B}, Q^{2}\right)\right] & x_{B}=\frac{Q^{2}}{2 p \cdot q}
\end{array}
$$

Parton distribution functions

- Collinear approximation $Q \sim x n \cdot p \gg k_{T}, \sqrt{k^{2}}$
- Lowest order:

Parton distribution functions

How do PDFs look like?

Parton distribution functions

\bullet PDFs from correlation matrix

- Example: The quark PDFs are obtained by applying certain projection to the quark-quark correlation matrix

$$
\begin{aligned}
\Phi_{i j}(k, P, S) & =\int d^{4} \xi e^{i k \xi}\langle P S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P S\rangle \\
\operatorname{Tr}(\Gamma \Phi) & =\int d^{4} \xi e^{i k \xi}\langle P S| \bar{\psi}(0) \Gamma \psi(\xi)|P S\rangle
\end{aligned}
$$

\ominus Not gauge invariant $\psi(x) \rightarrow e^{i \alpha(x)} \psi(x), \bar{\psi}(x) \rightarrow \bar{\psi}(x) e^{-i \alpha(x)}$

- Needs a gauge link

$$
W\left(x_{2}, x_{1}\right)=\mathscr{P} e^{-i g \int_{x_{1}}^{x_{2}} d x \cdot A(x)}, \quad W\left(x_{2}, x_{1}\right) \rightarrow e^{i \alpha\left(x_{2}\right)} W\left(x_{2}, x_{1}\right) e^{-i \alpha\left(x_{1}\right)}
$$

\bigcirc This correlation matrix satisfies certain constraints from hermiticity, parity and time-reversal invariance

$$
\begin{array}{rlcl}
\Phi^{\dagger}(k, P, S) & =\gamma^{0} \Phi(k, P, S) \gamma^{0} & \text { Hermiticity } & \\
\Phi(k, P, S) & =\gamma^{0} \Phi(\tilde{k}, \tilde{P},-\tilde{S}) \gamma^{0} & \text { Parity } & \tilde{k}^{\mu}=\left(k^{0},-\mathbf{k}\right) \\
\Phi^{*}(k, P, S) & =\gamma_{5} C \Phi(\tilde{k}, \tilde{P}, \tilde{S}) C^{\dagger} \gamma_{5} & \text { Time reversal } &
\end{array}
$$

Parton distribution functions

- Φ can be decomposed in terms of Dirac matrices

$$
\Phi(k, P, S)=\frac{1}{2}\left\{\mathscr{S} \mathbb{1}+\mathscr{V}_{\mu} \gamma^{\mu}+\mathscr{A}_{\mu} \gamma_{5} \gamma^{\mu}+\mathrm{i} \mathscr{P}_{5} \gamma_{5}+\frac{1}{2} \mathrm{i} \mathscr{T}_{\mu \nu} \sigma^{\mu v} \gamma_{5}\right\}
$$

- with the coefficients of each matrix

$$
\begin{aligned}
& \mathscr{S}=\frac{1}{2} \operatorname{Tr}(\Phi)=C_{1}, \\
& \mathscr{V}^{\mu}=\frac{1}{2} \operatorname{Tr}\left(\gamma^{\mu} \Phi\right)=C_{2} P^{\mu}+C_{3} k^{\mu}, \\
& \mathscr{A}^{\mu}=\frac{1}{2} \operatorname{Tr}\left(\gamma^{\mu} \gamma_{5} \Phi\right)=C_{4} S^{\mu}+C_{5} k \cdot S P^{\mu}+C_{6} k \cdot S k^{\mu}, \\
& \mathscr{P}_{5}=\frac{1}{2 \mathrm{i}} \operatorname{Tr}\left(\gamma_{5} \Phi\right)=0, \\
& \mathscr{T}^{\mu \nu}=\frac{1}{2 \mathrm{i}} \operatorname{Tr}\left(\sigma^{\mu v} \gamma_{5} \Phi\right)=C_{7} P^{[\mu} S^{\nu]}+C_{8} k^{[\mu} S^{\nu]}+C_{9} k \cdot S P^{[\mu} k^{\nu]},
\end{aligned}
$$

- $C_{i}=C_{i}\left(k^{2}, k \cdot P\right)$ are real functions

Parton distribution functions

- In the collinear approximation

$$
k^{\mu} \approx x P^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M}+S_{\perp}^{\mu}
$$

\bigcirc To leading-power accuracy, only three terms are left

$$
\begin{aligned}
& \mathscr{V}^{\mu}=\frac{1}{2} \int \mathrm{~d}^{4} \xi \mathrm{e}^{\mathrm{ik} \cdot \xi \cdot \xi}\langle P S| \bar{\psi}(0) \gamma^{\mu} \psi(\xi)|P S\rangle=A_{1} P^{\mu}, \\
& \mathscr{A}^{\mu}=\frac{1}{2} \int \mathrm{~d}^{4} \xi \mathrm{e}^{\mathrm{i} k \cdot \xi}\langle P S| \bar{\psi}(0) \gamma^{\mu} \gamma_{5} \psi(\xi)|P S\rangle=\lambda_{N} A_{2} P^{\mu}, \\
& \mathscr{T}^{\mu \nu}=\frac{1}{2 \mathrm{i}} \int \mathrm{~d}^{4} \xi \mathrm{e}^{\mathrm{i} k \cdot \xi}\langle P S| \bar{\psi}(0) \sigma^{\mu v} \gamma_{5} \psi(\xi)|P S\rangle=A_{3} P^{[\mu} S_{\perp}^{v]},
\end{aligned}
$$

and

$$
\Phi(k, P, S)=\frac{1}{2}\left\{A_{1} \not P+A_{2} \lambda_{N} \gamma_{5} P+A_{3} P \gamma_{5} \$_{\perp}\right\}
$$

$$
A_{1}=\frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \Phi\right), \quad \lambda_{N} A_{2}=\frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \gamma_{5} \Phi\right), \quad S_{\perp}^{i} A_{3}=\frac{1}{2 P^{+}} \operatorname{Tr}\left(\mathrm{i} \sigma^{i+} \gamma_{5} \Phi\right)=\frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \gamma^{i} \gamma_{5} \Phi\right)
$$

$$
\left\{\begin{array}{c}
f(x) \\
\Delta f(x) \\
\Delta_{T} f(x)
\end{array}\right\}=\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}}\left\{\begin{array}{c}
A_{1}\left(k^{2}, k \cdot P\right) \\
A_{2}\left(k^{2}, k \cdot P\right) \\
A_{3}\left(k^{2}, k \cdot P\right)
\end{array}\right\} \delta\left(x-\frac{k^{+}}{P^{+}}\right)=\left\{\begin{array}{l}
\int \frac{\mathrm{d} \xi^{-}}{4 \pi} \mathrm{e}^{\mathrm{i} P^{++\xi^{-}}}\langle P S| \bar{\psi}(0) \gamma^{+} \psi\left(0, \xi^{-}, 0_{\perp}\right)|P S\rangle \\
\int \frac{\mathrm{d} \xi^{-}}{4 \pi} \mathrm{e}^{\mathrm{i} P^{+} \xi^{-}}\langle P S| \bar{\psi}(0) \gamma^{+} \gamma_{5} \psi\left(0, \xi^{-}, 0_{\perp}\right)|P S\rangle \\
\int \frac{\mathrm{d} \xi^{-}}{4 \pi} \mathrm{e}^{\mathrm{i} \mathrm{i} P^{+} \xi^{-}}\langle P S| \bar{\psi}(0) \gamma^{+} \gamma^{1} \gamma_{5} \psi\left(0, \xi^{-}, 0_{\perp}\right)|P S\rangle
\end{array}\right.
$$

Parton distribution functions

- In the collinear approximation

$$
k^{\mu} \approx x P^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M}+S_{\perp}^{\mu}
$$

\bigcirc To leading-power accuracy, only three terms are left

- and

$$
\left.\mathscr{V}^{\mu}=\frac{1}{2} \int \mathrm{~d}^{4} \xi \mathrm{e}^{\mathrm{i} k \cdot \xi}\langle P S| \bar{\psi}(0) \gamma^{\mu} \psi(\xi) \right\rvert\, \underset{\text { Quark density/unpolarized }}{\longrightarrow}
$$

$$
\begin{aligned}
& \mathscr{A}^{\mu}=\frac{1}{2} \int \mathrm{~d}^{4} \xi \mathrm{e}^{\mathrm{i} k \cdot \xi \cdot \xi}\langle P S| \bar{\psi}(0) \gamma^{\mu} \gamma_{5} \psi(\zeta \\
& \left.\mathscr{T}^{\mu \nu}=\frac{1}{2 \mathrm{i}} \int \mathrm{~d}^{4} \xi \mathrm{e}^{\mathrm{i} k \cdot \xi \cdot \xi}\langle P S| \bar{\psi}(0) \sigma^{\mu v} \gamma_{5}\right\}
\end{aligned}
$$

$$
\Phi(k, P, S)=\frac{1}{2}\left\{A_{1} P+A_{2} \lambda_{N} \gamma_{5} \nRightarrow\right.
$$

$$
A_{1}=\frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \Phi\right), \quad \lambda_{N} A_{2}=\frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \gamma_{5} \Phi\right), \quad \text { Transversity } \quad \text { transversely polarized } \quad \operatorname{Tr}\left(\gamma^{+} \gamma^{i} \gamma_{5} \Phi\right)
$$

$$
\left\{\begin{array}{c}
f(x) \\
\Delta f(x) \\
\Delta_{T} f(x)
\end{array}\right\}=\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}}\left\{\begin{array}{c}
A_{1}\left(k^{2}, k \cdot P\right) \\
A_{2}\left(k^{2}, k \cdot P\right) \\
A_{3}\left(k^{2}, k \cdot P\right)
\end{array}\right\} \delta\left(x-\frac{k^{+}}{P^{+}}\right)=\left\{\begin{array}{l}
\int \frac{\mathrm{d} \xi^{-}}{4 \pi} \mathrm{e}^{\mathrm{i} P^{++\xi^{-}}}\langle P S| \bar{\psi}(0) \gamma^{+} \psi\left(0, \xi^{-}, 0_{\perp}\right)|P S\rangle \\
\int \frac{\mathrm{d} \xi^{-}}{4 \pi} \mathrm{e}^{\mathrm{i} P^{+} \xi^{-}}\langle P S| \bar{\psi}(0) \gamma^{+} \gamma_{5} \psi\left(0, \xi^{-}, 0_{\perp}\right)|P S\rangle \\
\int \frac{\mathrm{d} \xi^{-}}{4 \pi} \mathrm{e}^{\mathrm{i} \mathrm{i} P^{+} \xi^{-}}\langle P S| \bar{\psi}(0) \gamma^{+} \gamma^{1} \gamma_{5} \psi\left(0, \xi^{-}, 0_{\perp}\right)|P S\rangle
\end{array}\right.
$$

Parton distribution functions

- Global determination of PDFs from experimental data

Procedure: Iterate to find the best set of $\left\{a_{j}\right\}$ for the input DPFs

Parton distribution functions

- Theory prediction from lattice QCD
- Example:

$$
q(x)=\int \frac{d \lambda}{4 \pi} e^{i x \lambda}\langle P| \bar{\psi}(0) n \cdot \gamma L(0, \lambda n) \psi(\lambda n)|P\rangle \quad\left(n^{2}=0\right)
$$

- When reinterpreted in Feynman's parton picture

$$
q(x)=\int \frac{d \lambda}{2 \pi} e^{i x \lambda}\langle P=\infty| \psi^{\dagger}(z) \psi(0)|P=\infty\rangle, \quad|P=\infty\rangle=U\left(\Lambda_{\infty}\right)|P=0\rangle
$$

- The boost operator can be applied either to the static operator or to the external state, projecting out the same physics
- In practice, parton physics can be approximated by static correlations at large Lorentz boost (Large-Momentum Effective Theory) Ji, PRL 13' \& SCPMA 14', Ji, Liu, Liu, JHZ, Zhao, RMP 21’

$$
\tilde{q}\left(y, P^{z}\right)=N \int \frac{d z}{4 \pi} e^{-i y z P^{z}}\langle P| \bar{\psi}(0) \gamma^{0} L(0, z) \psi(z)|P\rangle
$$

$\tilde{q}\left(y, P^{z}\right)=C\left(y / x, \mu / x P^{z}\right) \otimes q(x, \mu)+\mathcal{O}\left(\Lambda_{Q C D}^{2} /\left(y P^{z}\right)^{2}, \Lambda_{Q C D}^{2} /\left((1-y) P^{z}\right)^{2}\right)$

Parton distribution functions

- Theory prediction from lattice QCD
- Example: nucleon isovector (u-d) quark transversity PDF

Yao et al (LPC), 22'

Generalizations: GPDs and TMDs

- PDFs can be generalized to include more kinematic dependence. The generalized quantities play an important role in describing three-dim. structure of nucleons

Wigner Distributions

Generalizations: GPDs and TMDs

- PDFs can be generalized to include more kinematic dependence. The generalized quantities play an important role in describing

Parton Distribution Functions

Generalizations: GPDs and TMDs

- The GPDs are given by non-forward matrix elements of nonlocal parton correlators, e.g.
$F(x, \xi, t)=\frac{1}{2 \bar{P}^{+}} \int \frac{d \lambda}{2 \pi} e^{-i x \lambda}\left\langle P^{\prime}\right| O_{\gamma^{+}}(\lambda n)|P\rangle=\frac{1}{2 \bar{P}^{+}} \bar{u}\left(P^{\prime}\right)\left[H(x, \xi, t) \gamma^{+}+E(x, \xi, t) \frac{i \sigma^{+\mu} \Delta_{\mu}}{2 M}\right] u(P)$
$O_{\gamma^{+}}(\lambda n)=\bar{\psi}\left(\frac{\lambda n}{2}\right) \gamma^{+} W\left(\frac{\lambda n}{2},-\frac{\lambda n}{2}\right) \psi\left(-\frac{\lambda n}{2}\right), \quad \bar{P}=\frac{P^{\prime}+P}{2}, \quad \Delta=P^{\prime}-P, \quad t=\Delta^{2}, \quad \xi=-\frac{\Delta^{+}}{2 \bar{P}^{+}}$
- Access through exclusive processes like deeply virtual Compton scattering and meson production

Factorization formula

$$
\mathcal{H}\left(\xi, t, Q^{2}\right)=\int_{-1}^{1} \frac{\mathrm{~d} x}{\xi} \sum_{a=g, u, d, \ldots, \ldots} C^{a}\left(\frac{x}{\xi}, \frac{Q^{2}}{\mu_{F}^{2}}, \alpha_{S}\left(\mu_{F}^{2}\right)\right) H^{a}\left(x, \xi, t, \mu_{F}^{2}\right)
$$

- Various models for GPD parametrization have been used for extraction from experimental data

Generalizations: GPDs and TMDs

 - Form factors from nucleon GPDs $\left\langle x^{n}\right\rangle=\int_{-1}^{1} d x x^{n-1} F(x, \xi, t)$

$$
\begin{aligned}
& \left\langle N\left(p_{f}\right)\right| V_{\mu}^{+}(x)\left|N\left(p_{i}\right)\right\rangle= \\
& \bar{u}^{N}\left[\gamma_{\mu} F_{1}\left(q^{2}\right)+i \sigma_{\mu \nu} \frac{q^{\nu}}{2 M_{N}} F_{2}\left(q^{2}\right)\right] u_{N} e^{i q \cdot x} \\
& \left\langle N\left(p_{f}\right)\right| A_{\mu}^{+}(x)\left|N\left(p_{i}\right)\right\rangle= \\
& \bar{u}_{N}\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+i q_{\mu} \gamma_{5} G_{P}\left(q^{2}\right)\right] u_{N} e^{i q \cdot x}
\end{aligned}
$$

Constantinou, JHZ et al, Prog. Part. Nucl. Phys. 21'

Generalizations: GPDs and TMDs

- Apart from the form factors, the entire distribution can also be accessed from suitable spatial correlations on lattice

$$
\begin{aligned}
& C_{\Gamma}^{3 \mathrm{pt}}\left(\vec{p}_{i}, \vec{p}_{f}, t, t_{\mathrm{sep}}\right) \\
& =\left|A_{0}\right|^{2}\langle 0| O_{\Gamma}|0\rangle e^{-E_{0} t_{\mathrm{sep}}}+\left|A_{1}\right|^{2}\langle 1| O_{\Gamma}|1\rangle e^{-E_{1} t_{\mathrm{sep}}} \\
& +A_{1} A_{0}^{*}\langle 1| O_{\Gamma}|0\rangle e^{-E_{1}\left(t_{\mathrm{sep}}-t\right)} e^{-E_{0} t}+A_{0} A_{1}^{*}\langle 0| O_{\Gamma}|1\rangle e^{-E_{0}\left(t_{\mathrm{sep}}-t\right)} e^{-E_{1} t}
\end{aligned}
$$

- via the factorization (after Fourier transform)

$$
\tilde{H}_{u-d}\left(x, \xi, t, P^{z}, \tilde{\mu}\right)=\int_{-1}^{1} \frac{d y}{|y|} C\left(\frac{x}{y}, \frac{\xi}{y}, \frac{\tilde{\mu}}{\mu}, \frac{y P^{z}}{\mu}\right) H_{u-d}(y, \xi, t, \mu)+\text { h.t. }
$$

Generalizations: GPDs and TMDs

- Nucleon GPDs (unpolarized)

Impact parameter distribution

Generalizations: GPDs and TMDs

- TMDs are relevant for multi-scale processes where low transverse momentum transfer is important
- Example: Drell-Yan process
- If transverse momentum $\mathbf{q}_{\mathbf{T}}$ of the lepton pair is not measured

$$
\frac{d \sigma}{d Q^{2}}=\sum_{i, j} \int_{0}^{1} d \xi_{a} d \xi_{b} f_{i / p_{a}}\left(\xi_{a}\right) f_{j / P}\left(p_{b}\left(\xi_{b}\right) \frac{d \hat{\sigma}_{i j}\left(\xi_{a}, \xi_{b}\right)}{d Q^{2}} \times\left[1+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q}\right)\right] \quad Q=\sqrt{q^{2}}\right.
$$

\bigcirc If \mathbf{q}_{T} is measured but $\left|\mathbf{q}_{T}\right| \sim Q \gg \Lambda_{\mathrm{QCD}}$

$$
\begin{aligned}
q_{T} \sim Q & \gg \Lambda_{\mathrm{QCD}}: \\
\frac{d \sigma}{d Q^{2} d^{2} \mathbf{q}_{\mathbf{T}}} & =\sum_{i, j} \int_{0}^{1} d \xi_{a} d \xi_{b} f_{i / P_{d}}\left(\xi_{a}\right) f_{j / P_{b}}\left(\xi_{b}\right) \frac{d \hat{\sigma}_{i j}\left(\xi_{a}, \xi_{b}\right)}{d Q^{2} d^{2} \mathbf{q}_{\mathbf{T}}} \times\left[1+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q}, \frac{\Lambda_{\mathrm{QCD}}}{q_{T}}\right)\right]
\end{aligned}
$$

If $\mathbf{q}_{\mathbf{T}}$ is measured but $\left|\mathbf{q}_{T}\right| \ll Q$

$$
q_{T} \ll Q:
$$

$$
\frac{d \sigma}{d Q^{2} d^{2} \mathbf{q}_{\mathbf{T}}}=\sum_{i, j} H_{i j}(Q) \int_{0}^{1} d \xi_{a} d \xi_{b} \int d^{2} \mathbf{b}_{\mathbf{T}} e^{i \mathbf{b}_{\mathbf{T}} \cdot \mathbf{q}_{\mathbf{T}}} \times f_{i / P}\left(\xi_{a}, \mathbf{b}_{\mathbf{T}}\right) f_{j / P}\left(\xi_{b}, \mathbf{b}_{\mathbf{T}}\right) \times\left[1+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q}, \frac{q_{T}}{Q}\right)\right]
$$

Generalizations: GPDs and TMDs

- We need to take into account the transverse momentum of quarks

$$
k^{\mu} \approx x P^{\mu}+k_{\perp}^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M}+S_{\perp}^{\mu}
$$

- To leading-power accuracy, we have

$$
\begin{aligned}
& \mathscr{V}^{\mu}=A_{1} P^{\mu}, \\
& \mathscr{A}^{\mu}=\lambda_{N} A_{2} P^{\mu}+\frac{1}{M} \tilde{A}_{1} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P^{\mu}, \\
& \mathscr{T}^{\mu \nu}=A_{3} P^{[\mu} S_{\perp}^{\nu]}+\frac{\lambda_{N}}{M} \tilde{A}_{2} P^{[\mu} \boldsymbol{k}_{\perp}^{\nu]}+\frac{1}{M^{2}} \tilde{A}_{3} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P^{[\mu} \boldsymbol{k}_{\perp}^{\nu]},
\end{aligned}
$$

Generalizations: GPDs and TMDs

- We need to take into account the transverse momentum of quarks

$$
k^{\mu} \approx x P^{\mu}+k_{\perp}^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M}+S_{\perp}^{\mu}
$$

- To leading-power accuracy, we have if time-reversal is relaxed

$$
\begin{aligned}
& \mathscr{V}^{\mu}=A_{1} P^{\mu},+\frac{1}{M} A_{1}^{\prime} \epsilon^{\mu \nu \rho \sigma} P_{\nu} k_{\perp \rho} S_{\perp \sigma} \\
& \mathscr{A}^{\mu}=\lambda_{N} A_{2} P^{\mu}+\frac{1}{M} \tilde{A}_{1} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P^{\mu}, \\
& \mathscr{T}^{\mu \nu}=A_{3} P^{[\mu} S_{\perp}^{\mu]}+\frac{\lambda_{N}}{M} \tilde{A}_{2} P^{[\mu} k_{\perp}^{v]}+\frac{1}{M^{2}} \tilde{A}_{3} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P^{[\mu} k_{\perp}^{\nu]},+\frac{1}{M} A_{2}^{\prime} \epsilon^{\mu \nu \rho \sigma} P_{\rho} k_{\perp \sigma}
\end{aligned}
$$

- And

$$
\Phi(k, P, S)=\frac{1}{2}\left\{A_{1} P+A_{2} \lambda_{N} \gamma_{5} P+A_{3} P \gamma_{5} S_{\perp}+\frac{1}{M} \tilde{A}_{1} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} \gamma_{5} P+\frac{1}{M} A_{1}^{\prime} \epsilon^{\mu \nu \rho \sigma} \gamma_{\mu} P_{\nu} k_{\perp \rho} S_{\perp \sigma}\right.
$$

$$
\left.+\frac{i}{2 M} A_{2}^{\prime} \epsilon^{\mu \nu \rho \sigma} P_{\rho} k_{\perp \sigma} \sigma_{\mu \nu} \gamma_{5}+\tilde{A}_{2} \frac{\lambda_{N}}{M} P \gamma_{5} \boldsymbol{k}_{\perp}+\frac{1}{M^{2}} \tilde{A}_{3} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P \gamma_{5} \boldsymbol{k}_{\perp}\right\} .
$$

- Leading-power projection is again given by

$$
\frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \Phi\right), \quad \frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \gamma_{5} \Phi\right), \quad \frac{1}{2 P^{+}} \operatorname{Tr}\left(i \sigma^{i+} \gamma_{5} \Phi\right)
$$

Generalizations: GPDs and TMDs

- We need to take into account the transverse momentum of quarks

$$
k^{\mu} \approx x P^{\mu}+k_{\perp}^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M}+S_{\perp}^{\mu}
$$

- To leading-power accuracy, we have if time-reversal is relaxed

$$
\begin{aligned}
& \mathscr{V}^{\mu}=A_{1} P^{\mu},+\frac{1}{M} A_{1}^{\prime} \epsilon^{\mu \nu \rho \sigma} P_{\nu} k_{\perp \rho} S_{\perp \sigma} \\
& \mathscr{A}^{\mu}=\lambda_{N} A_{2} P^{\mu}+\frac{1}{M} \tilde{A}_{1} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P^{\mu}, \\
& \mathscr{T}^{\mu \nu}=A_{3} P^{[\mu} S_{\perp}^{\mu]}+\frac{\lambda_{N}}{M} \tilde{A}_{2} P^{[\mu} k_{\perp}^{v]}+\frac{1}{M^{2}} \tilde{A}_{3} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P^{[\mu} k_{\perp}^{\nu]},+\frac{1}{M} A_{2}^{\prime} \epsilon^{\mu \nu \rho \sigma} P_{\rho} k_{\perp \sigma}
\end{aligned}
$$

- And

$$
\left.+\frac{i}{2 M} A_{2}^{\prime} \epsilon^{\mu \nu \rho \sigma} P_{\rho} k_{\perp \sigma} \sigma_{\mu \nu} \gamma_{5}+\tilde{A}_{2} \frac{\lambda_{N}}{M} P \gamma_{5} \boldsymbol{k}_{\perp}+\frac{1}{M^{2}} \tilde{A}_{3} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P \gamma_{5} \boldsymbol{k}_{\perp}\right\} .
$$

Leading-power projection is again given by

$$
\frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \Phi\right), \quad \frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \gamma_{5} \Phi\right), \quad \frac{1}{2 P^{+}} \operatorname{Tr}\left(i \sigma^{i+} \gamma_{5} \Phi\right)
$$

Generalizations: GPDs and TMDs

- We need to take into account the transverse momentum of quarks

$$
k^{\mu} \approx x P^{\mu}+k_{\perp}^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M}+S_{\perp}^{\mu}
$$

- To leading-power accuracy, we have if time-reversal is relaxed

$$
\begin{aligned}
& \mathscr{V}^{\mu}=A_{1} P^{\mu},+\frac{1}{M} A_{1}^{\prime} \epsilon^{\mu \nu \rho \sigma} P_{\nu} k_{\perp \rho} S_{\perp \sigma} \\
& \mathscr{A}^{\mu}=\lambda_{N} A_{2} P^{\mu}+\frac{1}{M} \tilde{A}_{1} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P^{\mu}, \\
& \mathscr{T}^{\mu \nu}=A_{3} P^{[\mu} S_{\perp}^{\mu]}+\frac{\lambda_{N}}{M} \tilde{A}_{2} P^{[\mu} k_{\perp}^{v]}+\frac{1}{M^{2}} \tilde{A}_{3} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P^{[\mu} k_{\perp}^{\nu]},+\frac{1}{M} A_{2}^{\prime} \epsilon^{\mu \nu \rho \sigma} P_{\rho} k_{\perp \sigma}
\end{aligned}
$$

$$
\begin{aligned}
& \text { And } \\
& \qquad(k, P, S)=\frac{1}{2}\{A_{1} P++A_{2} \lambda_{N} \gamma_{5} P P+A_{3} P \gamma_{5} S \underbrace{+\frac{1}{M} \tilde{A}_{1} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} \gamma_{5} P+\frac{1}{M} A_{1}^{\prime} \epsilon^{\mu \nu \rho \sigma} \gamma_{\mu} P_{\nu} k_{\perp \rho} S_{\perp \sigma}} \\
& M^{\left.A_{2}^{\prime} \epsilon^{\mu \nu \rho \sigma} P_{\rho} k_{\perp \sigma} \sigma_{\mu \nu} \gamma_{5}+\tilde{A}_{2} \frac{\lambda_{N}}{M} P \gamma_{5} k_{\perp}+\frac{1}{M^{2}} \tilde{A}_{3} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P \gamma_{5} k_{\perp}\right\} .}
\end{aligned}
$$

Leading-power projection is again given by

$$
\frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \Phi\right), \quad \frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \gamma_{5} \Phi\right), \quad \frac{1}{2 P^{+}} \operatorname{Tr}\left(i \sigma^{i+} \gamma_{5} \Phi\right)
$$

Generalizations: GPDs and TMDs

- We need to take into account the transverse momentum of quarks

$$
k^{\mu} \approx x P^{\mu}+k_{\perp}^{\mu}, S^{\mu} \approx \lambda_{N} \frac{P^{\mu}}{M}+S_{\perp}^{\mu}
$$

- To leading-power accuracy, we have if time-reversal is relaxed

$$
\begin{aligned}
& \mathscr{V}^{\mu}=A_{1} P^{\mu},+\frac{1}{M} A_{1}^{\prime} \epsilon^{\mu \nu \rho \sigma} P_{\nu} k_{\perp \rho} S_{\perp \sigma} \\
& \mathscr{A}^{\mu}=\lambda_{N} A_{2} P^{\mu}+\frac{1}{M} \tilde{A}_{1} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P^{\mu}, \\
& \mathscr{T}^{\mu \nu}=A_{3} P^{[\mu} S_{\perp}^{\mu]}+\frac{\lambda_{N}}{M} \tilde{A}_{2} P^{[\mu} k_{\perp}^{v]}+\frac{1}{M^{2}} \tilde{A}_{3} \boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp} P^{[\mu} k_{\perp}^{\nu]},+\frac{1}{M} A_{2}^{\prime} \epsilon^{\mu \nu \rho \sigma} P_{\rho} k_{\perp \sigma}
\end{aligned}
$$

- And

Leading-power projection is again given by

$$
\frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \Phi\right), \quad \frac{1}{2 P^{+}} \operatorname{Tr}\left(\gamma^{+} \gamma_{5} \Phi\right), \quad \frac{1}{2 P^{+}} \operatorname{Tr}\left(\left(\sigma^{i+} \gamma_{5} \Phi\right)\right.
$$

Generalizations: GPDs and TMDs

- These projections define the eight leading-twist quark TMDPDFs
- Introduce
- Then

$$
\Phi^{[\Gamma]} \equiv \frac{1}{2} \int \frac{\mathrm{~d} k^{+} \mathrm{d} k^{-}}{(2 \pi)^{4}} \operatorname{Tr}(\Gamma \Phi) \delta\left(k^{+}-x P^{+}\right)
$$

$$
=\int \frac{\mathrm{d} \xi^{-} \mathrm{d}^{2} \boldsymbol{\xi}_{\perp}}{2(2 \pi)^{3}} \mathrm{e}^{\mathrm{i}\left(x P^{+} \xi^{-}-\boldsymbol{k}_{\perp} \xi_{\perp}\right)}\langle P S| \bar{\psi}(0) \Gamma \psi\left(0, \xi^{-}, \boldsymbol{\xi}_{\perp}\right)|P S\rangle
$$

$\Phi^{\left[\gamma^{+}\right]}=f_{1}\left(x, \mathbf{k}_{\perp}^{2}\right)-\frac{\epsilon_{\perp}^{i j} k_{\perp i} S_{\perp j}}{M} f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$
$\Phi^{\left[\gamma^{+} \gamma_{5}\right]}=\lambda_{N} g_{1 L}\left(x, \mathbf{k}_{\perp}^{2}\right)-\frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp}}{M} g_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$
$\Phi^{\left[i \sigma^{i+} \gamma_{5}\right]}=S_{\perp}^{i} h_{1}\left(x, \mathbf{k}_{\perp}^{2}\right)+\frac{\lambda_{N}}{M} k_{\perp}^{i} h_{1 L}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)+\frac{1}{M^{2}}\left(\frac{1}{2} g_{\perp}^{i j} \mathbf{k}_{\perp}^{2}-k_{\perp}^{i} k_{\perp}^{j}\right) S_{\perp j} h_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)-\frac{\epsilon_{\perp}^{i j} k_{\perp j}}{M} h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$

- The leading-twist TMDPDFs can be interpreted as number densities
- When FT to coordinate space, the correlations exhibit certain symmetries

Generalizations: GPDs and TMDs

- These projections define the eight leading-twist quark TMDPDFs
- Introduce
- Then

$$
\Phi^{[\Gamma]} \equiv \frac{1}{2} \int \frac{\mathrm{~d} k^{+} \mathrm{d} k^{-}}{(2 \pi)^{4}} \operatorname{Tr}(\Gamma \Phi) \delta\left(k^{+}-x P^{+}\right)
$$

$\Phi^{\left[\gamma^{+}\right]}=f_{1}\left(x, \mathbf{k}_{\perp}^{2}\right)-\frac{\epsilon_{\perp}^{i j} k_{\perp i} S_{\perp j}}{M} f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$
$\Phi^{\left[\gamma^{+} \gamma_{5}\right]}=\lambda_{N} g_{1 L}\left(x, \mathbf{k}_{\perp}^{2}\right)-\frac{\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp}}{M} g_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$
$\Phi^{\left[i \sigma^{i+} \gamma_{5}\right]}=S_{\perp}^{i} h_{1}\left(x, \mathbf{k}_{\perp}^{2}\right)+\frac{\lambda_{N}}{M} k_{\perp}^{i} h_{1 L}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)+\frac{1}{M^{2}}\left(\frac{1}{2} g_{\perp}^{i j} \mathbf{k}_{\perp}^{2}-k_{\perp}^{i} k_{\perp}^{j}\right) S_{\perp j} h_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)-\frac{\epsilon_{\perp}^{i j} k_{\perp j}}{M} h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}^{2}\right)$
\bigcirc Again, gauge links are needed to ensure gauge invariance. Now they are staple-shaped

Generalizations: GPDs and TMDs

1) f_{1} : unpol. TMDPDF
2) $g_{1 L}:$ helicity TMDPDF
3) $h_{1}:$ transversity TMDPDF
4) $f_{1 T}^{\perp}$: Sivers function (T-odd)
5) h_{1}^{\perp} : Boer-Mulders function (T-odd)
6) $g_{1 T}^{\perp}$: worm-gear T/transversal helicity TMDPDF
7) $h_{1 L}^{\perp}$: worm-gear L/longitudinal transversity TMDPDF ${ }^{=}$

8) $h_{1 T}^{\perp}:$ pretzelosity TMDPDF

Generalizations: GPDs and TMDs

- Global analyses also exist for TMDs

Also lattice calculations
Constantinou, JHZ et al, Prog. Part. Nucl. Phys. 21'

He et al, LPC 22^{\prime}

Multiparton distributions

- Relevant for multiparton scattering processes
- Related to joint probability of finding two or more partons carrying momentum fractions x_{i} at given relative transverse separation
- Example: double parton distributions

$$
\begin{align*}
& f_{q_{1} q_{2}}\left(x_{1}, x_{2}, y^{2}\right)= \tag{1}\\
& 2 P^{+} \int d y^{-} \int \frac{d z_{1}^{-}}{2 \pi} \frac{d z_{2}^{-}}{2 \pi} e^{i\left(x_{1} z_{1}^{-}+x_{2} z_{2}^{-}\right) P^{+}} h_{0}\left(y, z_{1}, z_{2}, P\right) \\
& h_{0}\left(y, z_{1}, z_{2}, P\right)=\langle P| O_{q_{1}}\left(y, z_{1}\right) O_{q_{2}}\left(0, z_{2}\right)|P\rangle, \\
& O_{q}(y, z)=\bar{\psi}_{q}\left(y-\frac{z}{2}\right) \frac{\gamma^{+}}{2} W\left(y-\frac{z}{2} ; y+\frac{z}{2}\right) \psi_{q}\left(y+\frac{z}{2}\right),
\end{align*}
$$

JHZ, 23'

Factorization

$$
\left.\tilde{f}\left(x_{i}, \mu_{i}, y^{2}\right)=C_{1}\left(x_{1}, x_{1}^{\prime}, \mu_{1}^{2} /\left(x_{1}^{\prime} P^{z}\right)^{2}\right) \otimes C_{2}\left(x_{2} / x_{2}^{\prime}, \mu_{2}^{2} / x_{2}^{\prime} P^{z}\right)^{2}\right) \otimes f\left(x_{i}^{\prime}, \mu_{i}, y^{2}\right)+\ldots
$$

Summary

- Understanding the partonic structure of hadrons is an important goal of hadron physics, and is also relevant to collider phenomenology
- Lattice QCD can now be used to access dynamical properties of hadrons, and plays an important complementary role to phenomenological determinations of partonic observables
- Form factors
- PDFs, GPDs, TMDs...
- Multiparton distributions
- Both analytical and numerical inputs are needed to realize such calculations
- A lot more to be explored...

