SDU Qingdao lectures

Lectures on Heavy-Flavor Probes of Quark-Gluon Plasma

Min He

Nanjing Univ. of Sci. & Tech., Nanjing, China

Quarks & Forces

QCD & Symmetries

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} \mathcal{F}^a_{\mu\nu} \mathcal{F}^a_a + \overline{\psi} (i \mathcal{D} - M) \psi = \mathcal{L}_{\text{chiral}} - (m_u \overline{u} u + m_d \overline{d} d) + \mathcal{L}_{\text{scbl}}$$

✤ 2-flavor light sector: chiral symmetry

Higgs vs QCD masses

M. He Heavy flavor lecture, Jul. 2023

 $M_{B_{*}^{*}} - M_{B_{*}}$

splitting small

 47.0 ± 2.6

At high temperatures ...

Heat "melts" the quark condensate: QCD mass disappears above T_c . (Partial) chiral symmetry restoration

and advantage of UO_2 anabled by its large

Unique role and advantage of HQs enabled by its large lass

m_{c,b} >> A_{QCD} produced by pQCD processes (out of equil.)

- \succ $au_{_{
 m QGP}}$ << $au_{_{
 m QGP}}$ they go through all the QGP lifetime
- > m_{c,b} >> T₀ no thermal production
- > $\tau_{eq} > \tau_{QGP} >> \tau_{q,g}$ carry more information
- m>>T -> q²<<m² transport reduced to Brownian motion
- > $q_0 << |\vec{q}|$ Concept of potential V(r) <-> IQCD

Heavy flavor transport as probes of QGP

Outline

Lecture I: Open heavy flavor production in pp

- pQCD production
- hadronization:empirical fragmentation functions
- SHM approach

Lecture II: Open heavy flavor probes of QGP

- HQ interactions in QGP: pQCD vs T-matrix
- diffusion: Langevin vs Boltzmann
- Hadronization: recombination vs fragmentation
- > Phenomenology: $R_{AA} \& v_2 vs$ hadro-chemistry
- > extracting $\mathcal{D}_{s}(2\pi T)$

Lecture III: Heavy quarkonium probes of QGP

- Vacuum bound states, potential models
- HQ potential: remnants of confining force
- Reaction rates, transport approaches
- open quantum approach to Y states

Lecture I

Open heavy flavor production in pp collisions

- > pQCD production
- hadronization:empirical fragmentation functions
- > SHM approach

Heavy quark production: pQCD

Fig. 1a–f. Examples of heavy-flavor production diagrams. a,b Leading order. c Pair creation (with gluon emission). d Flavor excitation. e Gluon splitting. f Events classified as gluon splitting but of flavor-excitation character

- total cross sections in pp collisions: pair creation dominant at low root(s), flavor excitation important, gluon splitting comparable at high root(s)
- no non-perturbative effects contributing to the total cross section

M. He Heavy flavor lecture, Jul. 2023

b-bbar correlations @ Tevatron

M. He Heavy flavor lecture, Jul. 2023

Measurements of Q-Qbar cross sections

- ALICE, 5.02 TeV pp, do^{ccbar}/dy~1mb at y=0, significantly higher than before → impact on modelling of charmonium transport in QGP [direct measurement of all charm hadrons]
- ALICE, 7 TeV pp, dobbar/dy~57 mub at y=0 [indirect measurements of HF muons]
- LHCb, 7 TeV pp, dσ^{bbbar}/dy~27 mub at y=2-2.5 [indirect measurements of HF muons]

ALICE, PRD105, L011103 (2022)

Heavy quark fragmentation

From HQ to heavy hadron (pp): non-perturbative fragmentation

• HQ large mass $>> \Lambda_{QCD} \rightarrow$ hadroniztion & production well separated \rightarrow factorization

Fragmentation functions, e.g. Peterson FF Peterson et al., PRD27,105 (1983)

Heavy quark FF fitted to e⁺e⁻

♦ In e⁺e⁻ collisions, there's no initial pdf. E.g. for $e^+e^- \rightarrow (\gamma, Z) \rightarrow D^{*\pm} + X$

$$\frac{1}{\sigma_{\text{tot}}} \frac{d\sigma(e^+e^- \to D^{*\pm} + X)}{dx} = \frac{1}{\sigma_{\text{tot}}} \sum_a \int_x^1 \frac{dz}{z} D_a\left(\frac{x}{z}, M_f^2\right) \frac{d\sigma_a}{dz} \left(z, \mu^2, M_f^2\right)$$

- $x=E(D^*)/(root(s)/2)=2E(D^*)/root(s)$ Kniehl et al., Z.Phys.C677(1997); PRD71, 094013 (2005)
- Parameterizing the FF at starting scale M_f=μ, then evolving the FF with DGLAP eq. to M_f=Mz, such that it fits the e⁺e⁻ data when convoluted with hard-scattering dσ_a/dz

X_c	Order	Q	Ν	α	β	ϵ
D^0	LO	С	0.998			0.163
		b	71.8	1.65	5.19	
	NLO	С	1.16	•••		0.203
		b	97.5	1.71	5.88	
D^+	LO	С	0.340	•••		0.148
		b	48.5	2.16	5.38	
	NLO	С	0.398	•••		0.187
		b	64.9	2.20	6.04	•••
D_s^+	LO	С	0.0704	•••		0.0578
		b	40.0	2.05	4.93	
	NLO	С	0.0888	•••		0.0854
		b	21.8	1.64	4.71	
Λ_c^+	LO	С	0.0118	•••		0.0115
		b	44.1	1.97	6.33	•••
	NLO	С	0.0175	•••		0.0218
		b	27.3	1.66	6.24	

Heavy quark FF fitted to e⁺e⁻ (continued)

FIG. 1. The normalized differential cross sections $(1/\sigma_{tot})d\sigma/dx$ of inclusive (a) $D^0/\overline{D^0}$, (b) D^{\pm} , (c) D_s^{\pm} , and (d) Λ_c^{\pm} production in e^+e^- annihilation on the Z-boson resonance evaluated at LO (dashed lines) and NLO (solid lines) with our respective FF sets are compared with the OPAL data [8] renormalized as explained in the text (circles). The same is also done for the $Z \to b\overline{b}$ subsamples (squares). In addition, our LO and NLO fit results for the $Z \to c\overline{c}$ contributions are shown. In each case, the X_c hadron and its charge-conjugate counterpart are summed over.

M. He Heavy flavor lecture, Jul. 2023

FFs universal from e⁺e⁻ to pp?

♦ phenomenological FF: constrained by e⁺e⁻ & usually assumed universal

FFs universal from e⁺e⁻ to pp?

♦ phenomenological FF: constrained by e⁺e⁻ & usually assumed universal

- FF extracted from e⁺e⁻ applied to pp: k_T-factorization scheme D-mesons well reproduced but Λ_c much underestimated Maciula and Szczurek., PRD98, 014016 (2018)
- new production channel for Λ_c baryons in high-energy pp collisions ?

Λ_c^+/D^0 @ 5 TeV pp collisions

PYTHIA8: Color-reconnection with junctions frag. into baryons

- Catania: c-q(-q) coalescence
 in a small QGP fireball Minissale et al. '21
- Statistical hadronization in q-rich environment (unlike e⁺e⁻)
 - augmented by "missing" charm-baryons assuming *relative* chemical equilibrium MH & Rapp '19

$\Sigma_c/D^0 \& \Xi_c/D^0$

Statistical Hadronization of HQs

Statistical hadronization model

• Thermodynamic equilibrium = filling accessible phase space uniformly

P. B.-Munzinger et al., nucl-th/0304013 F. Becattini, 0901.3643

- High-energy collisions → clusters/fireballs at hadronization → collectively equivalent global cluster (EGC): colorless & endowed with conserved Abelian charges
- Occurring at a critical energy density [microscopic canonical ensemble] → replaced by a hadronization temperature T_H~160-170 MeV

Figure 1: High energy collisions are assumed to give rise to multiple clusters at the hadronization stage [top]. Each cluster [bottom] is a colorless extended massive object endowed with abelian charges (electric, strange, baryonic etc.), intrinsic angular momentum and other quantum numbers such as parity, C-parity and isospin.

SHM applies also to elementary collisions vs heavy-ion collisions (where multiparton scatterings leading to kinetic thermalization)
 F. Becattini, Eur. Phys. J. C (2008) 56: 493–510

Hadrons born into equilibrium?!

Eur. Phys. J. C 52, 187–201 (2007) DOI 10.1140/epjc/s10052-007-0368-6

The European Physical Journal C

Regular Article – Theoretical Physics

Thermal hadronization and Hawking–Unruh radiation in QCD

P. Castorina¹, D. Kharzeev^{2,a}, H. Satz³

¹ Dipartimento di Fisica, Università di Catania, and INFN Sezione di Catania, Via Santa Sofia 64, 95123 Catania, Italy

² Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

³ Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld, Germany

Received: 13 April 2007 / Revised version: 16 June 2007 / Published online: 27 July 2007 – © Springer-Verlag / Società Italiana di Fisica 2007

Abstract. We conjecture that, because of color confinement, the physical vacuum forms an event horizon for quarks and gluons, which can be crossed only by quantum tunneling, i.e., through the QCD counterpart of Hawking radiation at black holes. Since such radiation cannot transmit information to the outside, it must be thermal, of a temperature determined by the chromodynamic force at the confinement surface, and it must maintain color neutrality. We explore the possibility that the resulting process provides a common mechanism for thermal hadron production in high energy interactions, from e^+e^- annihilation to heavy ion collisions.

PACS. 04.70.Dy; 12.38.Aw; 12.38.Mh; 12.40.Ee; 25.75.Nq; 97.60.Lf

Hadron thermodynamic state is not reached by dynamical equilibration among constituents (partons or hadrons), →
 but rather a generic fingerprint of hadronization or a feature of QCD vacuum

Grand-canonical SHM in HIC

M. He Heavy flavor lecture, Jul. 2023

Augmented SHM for charm-hadrons in pp

- PDG: 5 Λ_C (I=0) ,3 Σ_C (I=1),8 Ξ_C (I=1/2),2 Ω_C (I=0) missing baryons?! RQM: 18 extra Λ_C , 42 extra Σ_C, 62 extra Ξ_C, 34 extra Ω_C up to 3.5 GeV → supported by lattice PRD 84 (2011) 014025; PoS LAT. 2014 (2015) 084; PLB 737 (2014) 210
- > Grand-canonical SHM density $T_{H}=170 \text{ MeV}$ $n_{i} = \frac{d_{i}}{2\pi^{2}}m_{i}^{2}T_{H}K_{2}(\frac{m_{i}}{T_{H}})$

						270	• H
$n_i (\cdot 10^{-4} \text{ fm}^{-3})$	D ⁰	D^+	D*+	D_s^+	Λ_c^+	$\Xi_{c}^{+,0}$	Ω_c^0
P <u>DG(170</u>)	1.161	0.5098	0.5010	0.3165	0.3310	0.0874	0.0064
R <u>QM(170</u>)	1.161	0.5098	0.5010	0.3165	0.6613	0.1173	0.0144
	ri	D^+/D^0	D^{*+}/D^{0}	D_{s}^{+}/D^{0}	Λ_c^+/D^0		
	PDG(170)	0.4391	0.4315	0.2736	0.2851		
	RQM(170)	0.4391	0.4315	0.2726	0.5696	MH, Rapp, PI (2019) 117–12	LB795 1

- Here, strong feeddowns of excited states all included: BR=100% to Λ_c^+ for all $\Lambda_c \& \Sigma_c$ even above DN (2805 MeV) threshold
- Strangeness supp. $\gamma_s=0.6$ & charm fugacity $\gamma_c=1$

Fragmentation & decay simulations

 FONLL fragmentation of charm quarks into all kinds of charmhadrons: relative weight <-->SHM thermal densities

- Decay simulations of all excited states to ground states D^0 , D⁺, D_s⁺, Λ_C^+ , $\Xi_C \& \Omega_C$

Results: charm-mesons

- both PDG & RQM work for charm-mesons
- but with different fitted charm dσ/dy=0.855 vs 1.0 mb MH, Rapp, PLB795 (2019) 117–121

Results: charm-baryons

- Λ_C⁺ favors RQM with dσ/dy=1.0 mb: low p_T enhancement from feeddowns of RQM augmented baryons
- uncertainty band: BR=50%-100% to ground state Λ_{C}^{+} for Λ_{C} 's & Σ_{C} 's above DN (2805 MeV) threshold

Results: charm-baryons (cont.)

- $\Sigma_c(2455)/D^0$ can also be accounted for within uncertainties
- But Ξ_c⁰/D⁰ much underestimated, although already twice as large as PYTHIA8(CR) ~ 0.001

Charm-hadron fractions in 5 TeV pp

- charm quark fragmentation is non-universal from e⁺e⁻ to pp
- ↔ charm content shuffled from meson (D⁰) to baryon (Λ_c) sector
- ✤ full charm-hadrons measured, do^{cc}/dy~1.16 mb at mid-y
 - ➔ significant impact on charmonia production in HIC

Λ_{c}^{+}/D^{0} : dN_{ch}/dη dependence

- Significant enhancement with increasing charged-particle multiplicity
- Might be straightforwardly consistent with statistical coalescence:
 Λ_C⁺~cqq, D⁰~cq → Λ_C⁺/D⁰ ~ q ~ dn_{ch}/dη

Canonical-ensemble SHM

Chemical factors: canonical suppression

CF	$N=10 \text{ fm}^3$	20	50	100	200
D^0	0.025877	0.066239	0.190294	0.373107	0.627886
D^+	0.025439	0.065891	0.190002	0.372841	0.627669
D_s^+	0.015805	0.053178	0.178586	0.362376	0.619125
Λ_c^+	0.016956	0.055485	0.182039	0.365923	0.622147
Ξ_c^{+0}	0.009884	0.042956	0.167943	0.352535	0.611073
Ω_c	0.003495	0.022604	0.130312	0.312514	0.576383
Λ_c^+/D^0	0.655254	0.837649	0.956620	0.980745	0.990860
$\overline{D_s^+}/D^0$	0.610774	0.802820	0.938474	0.971239	0.986047

pp mid-rapidity neutral (Q,B,S,C)=(0,0,0,0) $T_H = 170 \text{ MeV}, \gamma_s = 0.6, \gamma_c = 15$

- Column at given V: CF progressively smaller for hadrons containing more charges (S, B, BS, BSS)
- Row: CF increases with volume, tending to the common residual canonical charm supp. (canonical B/S supp. diminishing)
- Relative CF: $\Lambda_{c}^{+}/D^{0} \& D_{s}/D^{0}$ increases with volume toward unity

CE-SHM densities with feeddowns

$n_j \ (\cdot 10^{-4} {\rm fm}^{-3})$	V=10 ${\rm fm}^3$	20	50	100	200	GCE
D^0	0.445553	1.148287	3.310131	6.495330	10.934662	17.420949
D^+	0.194705	0.503847	1.453016	2.851351	4.800262	7.647869
D_s^+	0.075040	0.252484	0.847910	1.720531	2.939551	4.747914
$\Lambda_c^+(\mathrm{BR50\%})$	0.126963	0.439135	1.497132	3.045487	5.207572	8.415360
$\Lambda_c^+(\mathrm{BR100\%})$	0.149573	0.519555	1.776775	3.617118	6.187127	10.001702
Ξ_c^{+0}	0.016539	0.071955	0.281624	0.591389	1.025276	1.678110
Ω_c	0.000756	0.004889	0.028184	0.067592	0.124662	0.216283
$\Lambda_c^+/D^0(\mathrm{BR50\%})$	0.284956	0.382426	0.452288	0.468873	0.476244	0.483060
$\Lambda_{c}^{+}/D^{0}(\text{BR100\%})$	0.335702	0.452461	0.536769	0.556880	0.565827	0.574119
D_s^+/D^0	0.168420	0.219879	0.256156	0.264887	0.268829	0.272540

pp mid-rapidity neutral (Q,B,S,C)=(0,0,0,0) $T_H = 170 \text{ MeV}, \gamma_s = 0.6, \gamma_c = 15$

- Row: density of each charm-hadron increases with volume
- Λ_C⁺/D⁰ & D_s/D⁰: marked system-size dependence: a ~40% reduction from V=200 (~GCE-SHM) to V=10 fm³

Fragmentation & decay: p_T-dependent ratios

- Splitting of Λ_C⁺/D⁰ between dN_{ch}/dη=3.9 vs 44.0 roughly reproduced, due to additional canonical baryon supp. on charm-baryons, which becomes stronger toward smaller system-size
- Similar splitting of D_s^+/D^0 by additional canonical strangeness supp.

Augmented SHM for bottom-hadrons in pp

- * "Missing" bottom baryons: Ebert et al., PRD 84 (2011) 014025 PDG: 5 B, 4 B_s, 3 Λ_b, 2 Σ_b, 4 Ξ_b, 1 Ω_b RQM: 25 B, 20 B_s, 30 Λ_b, 46 Σ_b, 75 Ξ_b, 42 Ω_b
- ► Relativistic quark model (RQM): Q-light diquark bound states $\left(\frac{b^2(M)}{2\mu_R} - \frac{\mathbf{p}^2}{2\mu_R}\right)\Psi_{d,B}(\mathbf{p}) = \int \frac{d^3q}{(2\pi)^3} V(\mathbf{p}, \mathbf{q}; M)\Psi_{d,B}(\mathbf{q}) \quad \text{Ebert et al., PRD 84 (2011) 014025}$

TABLE I. Masses *M* and form factor parameters of diquarks. *S* and *A* denote scalar and axial-vector diquarks which are antisymmetric $[\cdots]$ and symmetric $\{\cdots\}$ in flavor, respectively [4].

_		Quark content	Diquark type	M (MeV)	ξ (GeV)	$\zeta~({\rm GeV^2})$
∧ _b	\rightarrow	[<i>u</i> , <i>d</i>]	S	710	1.09	0.185
۲b	\rightarrow	$\{u, d\}$	А	909	1.185	0.365
Ξh		[u, s]	S	948	1.23	0.225
0		$\{u, s\}$	А	1069	1.15	0.325
Ω_{b}		$\{s, s\}$	А	1203	1.13	0.280

PDG vs RQM heavy baryons ($\Lambda_Q \& \Sigma_Q$)

TABLE II. Masses of the Λ_Q (Q = c, b) heavy baryons (in MeV).

TABLE III.	Masses	of	the	Σ_o	(Q = c,	b)	heavy	baryons
(in MeV).				~				

			Q = c		Q = b					Q = c	Q = c
$I(J^P)$	Qd state	M	M^{\exp} [1]	M	<i>M</i> ^{exp} [1]		$I(J^P)$	$I(J^P)$ Qd state	$I(J^P)$ Qd state M	$I(J^{P})$ Qd state M M^{exp} [1]	$I(J^P)$ Qd state M M^{exp} [1] M
$0(\frac{1}{2}^{+})$	1 <i>S</i>	2286	2286.46(14)	5620	5620.2(1.6)		$1(\frac{1}{2}^{+})$	$1(\frac{1}{2}^+)$ 1S	$1(\frac{1}{2}^{+})$ 1S 2443	$1(\frac{1}{2}^{+})$ 1S 2443 2453.76(18)	$1(\frac{1}{2}^{+})$ 1S 2443 2453.76(18) 5808
$D(\frac{1}{2}^{+})$	2S	2769	2766.6(2.4)?	6089			$1(\frac{1}{2}^+)$	$1(\frac{1}{2}^+)$ 2S	$1(\frac{1}{2}^+)$ 2S 2901	$1(\frac{1}{2}^+)$ 2S 2901	$1(\frac{1}{2}^+)$ 2S 2901 6213
$0(\frac{1}{2}^{+})$	3 <i>S</i>	3130		6455			$1(\frac{1}{2}^+)$	$1(\frac{1}{2}^+)$ 3S	$1(\frac{1}{2}^+)$ 3S 3271 $1(1^+)$ 4S 2581	$1(\frac{1}{2}^+)$ 3S 3271 $1(1^+)$ 4S 2581	$1(\frac{1}{2})$ 3S 3271 6575 $1(\frac{1}{2})$ 4S 2581 6860
$0(\frac{1}{2}^{+})$	4S	3437		6756			$1(\frac{1}{2}^{+})$ $1(\frac{1}{2}^{+})$	$1(\frac{1}{2}^{+})$ 45 $1(\frac{1}{2}^{+})$ 55	$1(\frac{1}{2}^+)$ 45 5581 $1(\frac{1}{2}^+)$ 55 3861	$1(\frac{1}{2}^{+})$ 45 5581 $1(\frac{1}{2}^{+})$ 55 3861	$1(\frac{1}{2})$ 45 5581 0809 $1(\frac{1}{2})$ 55 3861 7124
$0(\frac{1}{2}^{+})$	5 <i>S</i>	3715		7015		$1(\frac{3}{2})$	+)	(+) $(-)$	(+) $1S$ 2519	$^{+})$ 1S 2519 2518.0(5)	(+) 1S 2519 2518.0(5) 5834
$0(\frac{1}{2}^{+})$	6 <i>S</i>	3973		7256		$1(\frac{3}{2}^{+})$		25	2 <i>S</i> 2936	2S 2936 2939.3(1.4)?	2S 2936 2939.3(1.4)? 6226
$(\frac{1}{2})(\frac{1}{2})$	1 <i>P</i>	2598	2595.4(6)	5930		$1(\frac{3}{2}^{+})$		35	3 <i>S</i> 3293	3 <i>S</i> 3293	3 <i>S</i> 3293 6583
$D(\frac{1}{2})$	2P	2983	$2939.3(^{1.4}_{1.5})?$	6326		$1(\frac{3}{2}^{+})$		4S	4 <i>S</i> 3598	4 <i>S</i> 3598	4 <i>S</i> 3598 6876
$(\frac{1}{2})^{-}$	3 <i>P</i>	3303	1.5	6645		$1(\frac{3}{2}^+)$		5S	5 <i>S</i> 3873	5 <i>S</i> 3873	5S 3873 7129
$(\frac{1}{2})(\frac{1}{2})$	4P	3588		6917		$1(\frac{1}{2})$	1P 2P		2799	$2799 2802(\frac{1}{7})$	2799 $2802(\frac{1}{7})$ 6101
$0(\frac{1}{2}^{-})$	5P	3852		7157		$1(\frac{1}{2})$	2P 3P		3488	3488	3488 6756
$(\frac{3}{2})$	1 <i>P</i>	2627	2628.1(6)	5942		$1(\frac{1}{2})$ $1(\frac{1}{2})$	4P		3770	3770	3770 7024
$(\frac{3}{2})$	2 <i>P</i>	3005		6333		$1(\frac{1}{2}^{-})$	1 P		2713	2713	2713 6095
$(\frac{3}{2})$	3 <i>P</i>	3322		6651		$1(\frac{\tilde{1}}{2}^{-})$	2P		3125	3125	3125 6430
$0(\frac{3}{2})$	4P	3606		6922		$1(\frac{1}{2})$	3 <i>P</i>		3455	3455	3455 6742
$0(\frac{3}{2})$	5 <i>P</i>	3869		7171		$1(\frac{1}{2})$	4P		3743	3743	3743 7008
$0(\frac{3}{2}^{+})$	10	2874		6190		$1(\frac{3}{2})$	1 <i>P</i>		2798	2798 $2802(^4_7)$	$2798 2802(^4_7) 6096$
$0(\frac{3}{2}^{+})$	20	3180		6526		$1(\frac{3}{2})$	2P 2 D		3172	3172	3172 6430 2486 6742
$0(\frac{1}{2})$	20	3480		6811		$1(\frac{3}{2})$	3P A D		3480	3480	3480 6/42 3768 7000
$0(\frac{1}{2})$	3D 4D	2747		7060		$1(\frac{3}{2})$	4r 1P		2773	2773 2766 6(2 4)?	2773 2766 6(2.4)? 6087
$0(\frac{3}{2}^{+})$	4D	3/4/	0001 50(25)	/060		$1(\frac{3}{2})$	2P		3151	3151	3151 6423
$0(\frac{5}{2}^{+})$		2880	2881.53(35)	6196		$1(\frac{3}{2})$	3 <i>P</i>		3469	3469	3469 6736
$0(\frac{5}{2}^{+})$	2D	3209		0531		$1(\frac{3}{2}^{-})$	4P		3753	3753	3753 7003
$0(\frac{3}{2}^{+})$	3D	3500		6814		$1(\frac{5}{2}^{-})$	1 <i>P</i>		2789	2789	2789 6084

Strong decay systematics: BR's estimation

Counting all possible diagrams once above the threshold

- Probability of producing a q-qbar pair ∝ exp(-2m/T_H)
 ⇒ exp(-2m_q/T_H) : exp(-2m_s/T_H) = 1 : 1/3 [m_q~8, m_s~100 MeV]
 → diagrams involving s-sbar counted as 1/3
- E.g. BR(B^{-*} \rightarrow B⁻+ π^0)=1/(1+1+1/3)=43% BR(B^{-*} \rightarrow B⁰bar+ π^-)=1/(1+1+1/3)=43% BR(B^{-*} \rightarrow B⁰_sbar+ π^0)=1/3/(1+1+1/3)=14%

Strong decay systematics: BR's estimation

Counting all possible diagrams once above the mass threshold

- E.g. $BR(\Lambda_b^{0^*} \rightarrow \Sigma_b + \pi^- \rightarrow \Lambda_b^{0} + 2\pi) = 3/(3+2+2*1/3+1/3) = 54\%$ $BR(\Lambda_b^{0^*} \rightarrow B^- + p) = 1/(3+2+1/3+2*1/3) = 16\%$ $BR(\Lambda_b^{0^*} \rightarrow \Xi_b + K) = 2/3/(3+2+1/3+2*1/3) = 11\%$ $BR(\Lambda_b^{0^*} \rightarrow B_s^{0} \text{ bar } + \Lambda) = 1/3/(3+2+1/3+2*1/3) = 6\%$
- Results comparable to (limited) results computed in ³P₀ model Ferretti et al., PRD 97114020 (2018); Yu et al., 2206.08128

Augmented SHM for bottom hadrons in pp

- Grand-canonical SHM densities $n_i^{\text{primary}} = \frac{d_i}{2\pi^2} \gamma_s^{N_s^i} m_i^2 T_H K_2(\frac{m_i}{T_H})$
 - ➔ Weakly decaying b-hadrons (ground states)

 f_{α}

strangeness supp. $\gamma_s=0.6$

bottom fugacity $\gamma_{\rm b}=1$

- $n_{\alpha} = n_{\alpha}^{\text{primary}} + \sum n_{i}^{\text{primary}} \cdot BR(i \to \alpha)$ $n_{\alpha} (\cdot 10^{-12} \text{ fm}^{-3}) \quad B^{-} \qquad \bar{B}^{0}$ $\Xi_{b}^{0,-}$ \bar{B}^0_s Λ_{b}^{0} Ω_h^- PDG(170) 1.0094 1.0089 0.29308 0.31591 0.100970.002341PDG(160) $0.12655 \ 0.12649 \ 0.036622 \ 0.034241 \ 0.010520 \ 0.00023076$ MH & Rapp, RQM(170)1.2045 1.2041 0.32513 0.61702 0.19548 0.0063204arXiv:2209.13419 RQM(160) $0.14567 \ 0.14561 \ 0.039664 \ 0.061914 \ 0.018819 \ 0.00061087$ \bar{B}^0_s $\Lambda_b^0 = \Xi_b^{0,-}$ $\bar{B}^0/B^- \ \bar{B}^0_s/B^- \ \Lambda^0_b/B^- \ \Xi^{0,-}_b/B^ \bar{B}^0$ $B^$ r_{α} PDG(170) 0.3697 0.3695 0.1073 0.1157 0.03698 PDG(170) 0.9995 0.2904 0.3129 0.1000PDG(160) 0.3782 0.3780 0.1094 0.1023 0.03144 PDG(160) 0.9995 0.2894 0.27060.08313RQM(170) 0.3391 0.3389 0.09152 0.1737 0.05503 RQM(170) 0.9994 0.2699 0.51220.1623RQM(160) 0.3533 0.3532 0.09620 0.1502 0.04565 RQM(160) 0.9996 0.2723 0.4250 0.1292
- RQM vs PDG: $\Lambda_b \& \Xi_b$ fraction both enhanced by ~50% $f_u = f_d = 0.340 \pm 0.021, f_s = 0.101 \pm 0.015$
- RQM f_a very comparable to p-pbar data by Tevatron •

 $f_{\rm barvon} = 0.220 \pm 0.048$ HFLAG, Eur. Phys. J. C (2021) 81:226

Fit of p_T-spectra & cross sections

FONLL b-quark spectrum + FF $D_{b \to H_b}(z) \propto z^{\alpha}(1-z)$ to all states (weight \propto density) + decay simulations \rightarrow ground states p_T -spectra

- B⁺+B⁻ data equally well described by RQM & PDG, but ~10% smaller $d\sigma^{bbar}/dy$ for PDG
- The decrease is due to reduction of bottom content in the baryon sector

Bottom hadro-chemistry: ratios

Summary: HQ hadronization in pp

- Statistical hadronization of HQs in hadronic collisions works well
 heavy hadron fragmentation fractions & ratios well explained, especially for bottom for the first time, by augmenting PDG states with many more "missing" states/baryons predicted by RQM/lattice QCD
- Baryon/meson ratio significantly enhanced in hadronic (pp, pp-bar) than e⁺e⁻
 → shuffling of charm/bottom content from meson to baryon sector
 → universaility assumption of HQ fragmentation is not true

 More intuitively, high-energy pp, pp-bar provide a quark-rich environment conducive to (statistical) recombination of HQ with light quarks, especially to the formation of heavy baryons, VS e⁺e⁻ with less phase space

The following are back-up pages

Λ_{c}^{+}/D^{0} enhancement surprise

- A factor ~5 enhancement w.r.t. e⁺e⁻ at low p_T, much underestimated by FFs tuned to e⁺e⁻
- ✤ decreasing toward high p_T, trend similar to Λ/K and p/pi

Flavor dependence: charm vs bottom

x3 mass: b-quark longer thermalization time at low p_T than charm less flow added to b from recombination with u/d/s

♦ high p_T>15 GeV: b-quark less radiative e-loss ← stronger "dead cone"

Charm hadro-chemistry: D_s/D⁰

- low p_T: enhancement due to charm recombination in a strangeness-equilibrated QGP reproduced by Cantania & PHSD; overestimated by TAMU in both pp and PbPb
- high p_T: tending to pp value as fragmentation takes over
- flow bump due to recombination with flowing s-quark heavier than u/d, predicted by TAMU (RRM w/ SMCs) & SHMc (hydro blastwave spectrum)

X(3872) production in HIC

inner structure: compact tetraquark vs loosely bound molecule

Charm quark recombination probability

 \succ No. of mesons/baryons formed from a single c-quark of rest frame p_c^*

$$\begin{split} N_M(p_c^*) &= \int \frac{d^3 \vec{p}_1^*}{(2\pi)^3} g_q e^{-E(\vec{p}_1^*)/T_{\rm pc}} \frac{E_M(\vec{p}^*)}{m_M \Gamma_M} \sigma(s) v_{\rm rel}, \\ N_B(p_c^*) &= \int \frac{d^3 p_1 d^3 p_2}{(2\pi)^6} g_1 e^{-E(\vec{p}_1)/T_c} g_2 e^{-E(\vec{p}_2)/T_c} \frac{E_d(\vec{p}_{12})}{m_d \Gamma_d} \sigma(s_{12}) v_{\rm rel}^{12}(\vec{p}_1, \vec{p}_2) \frac{E_B(\vec{p})}{m_B \Gamma_B} \sigma(s_{d3}) v_{\rm rel}^{d3}(\vec{p}_{12}, \vec{p}_{30}), \end{split}$$

▶ Renormalizing $N_M(p_c^*)$ and $N_B(p_c^*)$ by a common factor ~4 for all charmed mesons/baryons such that $\sum_M P_{\text{coal},M}(p_c^*=0) + \sum_B P_{\text{coal},B}(p_c^*=0) = 1$

charm conservation consistently built in, in an (e-by-e) way without spoiling the relative chemical equilibrium realized by RRM

M. He Heavy flavor lecture, Jul. 2023

Space-momentum correlations: light-q

M. He Heavy flavor lecture, Jul. 2023

SMCs: Langevin charm quarks

Langevin-c: low (high) p_T more populated in central (outer)

SMCs usually neglected in ICMs: uniformly distributed independent of p_T $f_{c,q}(\vec{x}, \vec{p}) = (2\pi)^3 \frac{dN_{c,q}}{d^3 \vec{x} d^3 \vec{p}} = \frac{(2\pi)^3}{VE_{(\vec{p})}} \frac{dN_{c,q}}{p_T dp_T d\phi_q dy}$

M. He Heavy flavor lecture, Jul. 2023

RRM equilibrium mapping

Event-by-event Langevin-RRM simulation with very large trans. coeffi.
 & with SMCs properly incorporated

→ kinetic & chemical equil. mapping

Observables come out as RRM predictions with realistic T-matrix coeffi.

Direct D⁰ & Λ_c^+ **production via RRM**

> Including SMCs makes spectra harder & enhances the Λ_c^+/D^0

- Fast-moving c-quarks [p_T~ 3-4 GeV] moving to outer part of fireball find higher-density of harder [p_T~ 0.6-0.9 GeV] light quarks for recombination
- An effect entering squared for the recombination production of Λ_c⁺
 → larger enhancement for Λ_c⁺ → Λ_c⁺/D⁰ ratio enhanced!

D^0 , D_s^+ & Λ_c^+ suppression & elliptic flow

Final D⁰, $D_s^+ \& \Lambda_c^+$, including feeddowns from all RQM baryons

- T-matrix coefficient*K-factor(=1.6), to compensate for radiative e-loss; uncertainty: BR=50-100% to Λ_c^+ for Λ_c 's & Σ_c 's above DN (2805 MeV)
- Hadronic phase diffusion also included: seamlessly connected to hadronization (RRM+frag), increasing D-meson v_2 by ~15%

Charm-hadron ratios: $\Lambda_c^+/D^0 \& D_s^+/D^0$

- Λ_c⁺/D⁰: low p_T approaching RRM equil. limit = SHM pp; intermediate p_T enhancement from RRM with SMCs; high p_T fragmentation tending to pp value
- D_s⁺/D⁰ enhancement: recombination of charm in a strangenessequilibrated QGP

Hadronization: SHMc Andronic, PBM et al. 2104.12754

