Nuclear structure imaging in high-energy nuclear collisions

Jiangyong Jia

The State University of New York

07/24/2023, summer school lecture

Landscape of nuclear physics

Most nuclear experiments starts with nuclei

Collective shape of atomic nuclei

- Emergent phenomena of many-body quantum system
- clustering, halo, skin, bubble...
- quadrupole/octupole/hexdecopole deformation
- Nontrivial evaluation with N and Z.

High-energy heavy ion collision

High-energy heavy ion collision

Extraction of QGP properties is limited by the uncertainties in initial condition

- Comparing collisions of nuclei with different shapes constrains the initial condition
- Provide insights on manifestation of nuclear structure at high energy scale.

Infer initial condition from flow correlations ⁶

1206.1905

imaging relies on linear response:

$N_{ch} \propto N_{part}$	$rac{\delta[p_T]}{[p_T]} \propto$	$-rac{\delta R_{\perp}}{R_{\perp}}$	V_n	$\propto \mathcal{E}_n$
---------------------------	------------------------------------	--------------------------------------	-------	-------------------------

Connecting HI initial condition with nuclear shape

Shape depends on Euler angle $\Omega = \phi \theta \psi$

Intrinsic frame

7

Impact on high-order fluctuations

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{(r-R(\theta,\phi))/a_0}} R(\theta,\phi) = R_0 \left(1+\frac{\beta_2}{\cos\gamma Y_{2,0}} + \sin\gamma Y_{2,2}\right) + \frac{\beta_3}{2} \sum_{m=-3}^{3} \frac{\alpha_{3,m}Y_{3,m}}{\cos\gamma Y_{3,m}} + \frac{\beta_4}{2} \sum_{m=-4}^{4} \frac{\alpha_{4,m}Y_{4,m}}{\cos\gamma Y_{4,m}}\right)$$

- In principle, can measure any moments of $p(1/R, \varepsilon_2, \varepsilon_3...)$
- All have simple connection to deformation:
 - Variances

. . .

Skewness

$$egin{aligned} &\langle arepsilon_2^2
angle &\sim a_2 + b_2 eta_2^2 \ &\langle arepsilon_3^2
angle &\sim a_3 + b_3 eta_3^2 \ &\langle arepsilon_4^2
angle &\sim a_4 + b_4 eta_4^2 + b_{4,2} eta_2^2 \ &\langle (\delta d_\perp/d_\perp)^2
angle &\sim a_0 + b_0 eta_2^2 + b_{0,3} eta_3^2 \end{aligned}$$

$$egin{aligned} &\langle arepsilon_2^2 \delta d_\perp / d_\perp
angle &\sim a_1 - b_1 \cos(3\gamma) eta_2^3 \ &\langle (\delta d_\perp / d_\perp)^3
angle &\sim a_2 + b_2 \cos(3\gamma) eta_2^3 \end{aligned}$$

Low-energy vs high-energy method

- Intrinsic frame shape not directly visible in lab frame at time scale $\tau > I/\hbar \sim 10^{-21} s$
- Mainly inferred from non-invasive spectroscopy methods.

 High-energy collisions: Shape frozen in nuclear crossing (10⁻²⁴s << rotational time scale 10⁻²¹s), probe entire mass distribution in the intrinsic frame via multi-point correlations.

Collective flow assisted imaging

Digression: Coulomb Explosion Imaging

Instantaneous stripping of electrons (thin foil or x-ray laser), and then let atoms explode under mutual coulomb repulsion

Fig. 1. A schematic view of a Coulomb explosion experiment. When a swift molecule passes through a thin solid film, it loses all of its binding electrons. The remaining positive ions repel each other, thus transforming the microstructure (as seen in the magnified view) into a macrostructure that can be measured precisely with an appropriate detector. The measured traces (x, γ, t) of each fragment nucleus for individual molecules are then transformed into the original molecular structure.

Case study: Isobar collisions at RHIC

⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr at $\sqrt{s_{NN}}$ =200 GeV

• A key question for any HI observable **O**:

2109.00131

Deviation from 1 must has origin in the nuclear structure, which impacts the initial state and then survives to the final state.

Expectation

$$\mathcal{O} \approx b_0 + b_1 \beta_2^2 + b_2 \beta_3^2 + b_3 (R_0 - R_{0,\text{ref}}) + b_4 (a - a_{\text{ref}})$$

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Species	β_2	β_3	a_0	R_0		
Ru	0.162	0	$0.46~\mathrm{fm}$	$5.09~{\rm fm}$		
Zr	0.06	0.20	$0.52~\mathrm{fm}$	$5.02~{\rm fm}$		
difference	$\Delta \beta_2^2$	$\Delta \beta_3^2$	Δa_0	ΔR_0		
umerence	0.0226	-0.04	-0.06 fm	$0.07~\mathrm{fm}$		

Structure influences everywhere

13

 $\mathcal{O}_{\mathrm{Ru}}$

 $R_{\mathcal{O}} \equiv$

Nuclear structure via v₂-ratio and v₃-ratio

14

Nuclear structure via v_2 -ratio and v_3 -ratio

15

Nuclear structure via v_2 -ratio and v_3 -ratio

16

Simultaneously constrain these parameters using different N_{ch} regions

Isobar ratios cancel final state effects

- Vary the shear viscosity via partonic cross-section
 - Flow signal change by 30-50%, the v_n ratio unchanged.

Robust probe of initial state!

17

Constrain heavy-ion initial condition

Different ways of depositing energy

$$T\propto \left(rac{T_A^p+T_B^p}{2}
ight)^{q/p}$$

 $e(x,y)\sim egin{cases} T_A+T_B&N_{
m part}-{
m scaling}, p=1\ T_AT_B&N_{
m coll}-{
m scaling}, p=0, q=2\ \sqrt{T_AT_B}&{
m Trento}~{
m default}, p=0\ \min\{T_A,T_B\}&{
m KLN}~{
m model}, p\sim -2/3\ T_A+T_B+lpha T_AT_B&{
m two-component}~{
m model},\ {
m similar}~{
m to}~{
m quark-glauber}~{
m model} \end{cases}$

Use nuclear structure as extra lever-arm for initial condition

$$\begin{array}{c} \text{Prolate} \\ \beta_2 = 0.25, \cos(3\gamma) = 1 \\ \hline \\ \text{body-body} \end{array} \begin{array}{c} \text{tip-tip} \\ \text{tip-tip} \\ \text{tip-tip} \end{array} \begin{array}{c} \text{tip-tip} \\ \text{tip-tip} \end{array} \end{array} \begin{array}{c} \text{tip-tip} \\ \text{tip-tip} \end{array} \begin{array}{c} \text{tip-tip} \\ \text{tip-tip} \end{array} \begin{array}{c} \text{tip-tip} \\ \text{tip-tip} \end{array} \end{array}$$

Need 3-point correlators to probe the 3 axes

 $ig\langle v_2^2 \delta p_{
m T} ig
angle \sim -eta_2^3 \cos(3\gamma) \qquad ig\langle (\delta p_{
m T})^3 ig
angle \sim eta_2^3 \cos(3\gamma)$

2109.00604

 $\begin{aligned} \mathsf{Triaxial}\\ \beta_2 = 0.25, \cos(3\gamma) = 0 \end{aligned}$

Oblate $\beta_2 = 0.25, \cos(3\gamma) = -1$

Prolate

$$\beta_{2} = 0.25, \cos(3\gamma) = 1$$

$$ip-tip$$

$$point correlators to probe the 3 axes$$

$$\langle v_{2}^{2} \delta p_{T} \rangle \sim -\beta_{2}^{3} \cos(3\gamma) = \langle \delta p_{T} \rangle^{3} \rangle \sim \beta_{2}^{3} \cos(3\gamma) = 1$$

$$(v_{2}^{2} \delta p_{T}) \rangle \sim -\beta_{2}^{3} \cos(3\gamma) = \langle \delta p_{T} \rangle^{3} \rangle \sim \beta_{2}^{3} \cos(3\gamma) = 1$$

$$(v_{2}^{2} \delta p_{T}) \rangle \sim -\beta_{2}^{3} \cos(3\gamma) = \langle \delta p_{T} \rangle^{3} \rangle \sim \beta_{2}^{3} \cos(3\gamma) = 1$$

$$(v_{2}^{2} \delta p_{T}) \rangle \sim -\beta_{2}^{3} \cos(3\gamma) = \langle \delta p_{T} \rangle^{3} \rangle \sim \beta_{2}^{3} \cos(3\gamma) = 1$$

$$(v_{2}^{2} \delta p_{T}) \rangle \sim -\beta_{2}^{3} \cos(3\gamma) = \langle \delta p_{T} \rangle^{3} \rangle \sim \beta_{2}^{3} \cos(3\gamma) = 1$$

$$(v_{2}^{2} \delta p_{T}) \rangle \sim -\beta_{2}^{3} \cos(3\gamma) = \langle \delta p_{T} \rangle^{3} \rangle \sim \beta_{2}^{3} \cos(3\gamma) = 1$$

$$(v_{2}^{2} \delta p_{T}) \rangle \sim -\beta_{2}^{3} \cos(3\gamma) = 0$$

$$(v_{2}^{2} \delta p_{T}) \rangle \sim -\beta_{2}^{3} \cos(3\gamma) = 0$$

$$(v_{2}^{2} \delta p_{T}) \rangle = 0$$

$$(v_{2}^{2} \delta$$

Opportunities at the intersection of nuclear structure and hot QCD

Many examples in <u>https://arxiv.org/abs/2209.11042</u>, but here is my list

- Probe octupole and hexadecapole deformations via v3 and v4 in central collisions.
- Gauge shape of odd-mass nuclei by comparing with neighboring even-even nuclei.
- Separate average shape from shape fluctuations via multi-particle correlations
- Constrain the radial structure of nuclei, including the neutron skin
- Structure in small systems including alpha clustering (e.g. ¹⁶O+¹⁶O vs ²⁰Ne+²⁰Ne)

See recent INT program 23-1A

Shape evolution of ^{144–154}Sm isotopic chain

Transition from nearly-spherical to well-deformed nuclei when size increase by less than 7%. Using HI to access the multi-nucleon correlations leading to such shape evolution, as well as dynamical β_3 and β_4 shape fluctuations (in addition to initial condition)

b', b are ~ independent of system

Systems with similar A falls on the same curve.

Fix a and b with two isobar systems with known β_2 , then predict others.

Influence of triaxiality: Glauber model

Skewness sensitive to γ

Described by

$$\left\langle arepsilon_2^2 rac{\delta d_\perp}{d_\perp}
ight
angle \propto \left\langle v_2^2 \delta p_{
m T}
ight
angle \propto a + b \cos(3\gamma) eta_2^3$$

variances insensitive to γ

$$\left< arepsilon_2^2
ight
angle \propto \left< v_2^2
ight
angle \propto a + b eta_2^2$$

Use variance to constrain β_2 , use skewness to constrain γ

(β_2, γ) diagram in heavy-ion collisions

24

 $\begin{array}{l} d_{\perp} \propto 1/R_{\perp} \\ \text{The } (\beta_2, \gamma) \text{ dependence in 0-1\%} & \langle \varepsilon_2^2 \rangle \approx [0.02 + \beta_2^2] \times 0.235 \\ \text{U+U Glauber model can be} & \langle (\delta d_{\perp}/d_{\perp})^2 \rangle \approx [0.035 + \beta_2^2] \times 0.0093 \\ \text{approximated by:} & \langle \varepsilon_2^2 \delta d_{\perp}/d_{\perp} \rangle \approx [0.0005 - (0.07 + 1.36\cos(3\gamma))\beta_2^3] \times 10^{-2} \end{array}$

Collision system scan to map out this trajectory: calibrate coefficients with species with known β , γ , then predict for species of interest.

Effect of shape fluctuations

$$\left\langle v_2^2 \delta p_{
m T}
ight
angle pprox a - b \left\langle eta_2^3 \cos(3\gamma)
ight
angle$$

$$egin{aligned} &\langle\cos(3\gamma)
anglepprox\exp{(-9\sigma_{\gamma}^2/2)\cos(3ar{\gamma})}\ &\sigma_{\gamma}^2=\langle(\gamma-ar{\gamma})^2
angle\ &2301.03556 \end{aligned}$$

Fluctuation in γ damps difference between prolate and oblate, such that all results approach triaxial case

60°

 $\beta_2(min)=0.124 \gamma(min)=30^{\circ} \Delta E=0.3 \text{ MeV}$

0.1

0.2

0.3

β₂ PRC101, 064318(2020)

0.0

¹²⁸Xe

0.4

0.5

Separate average shape and its fluctuations

 Shape fluctuations and shape coexistence can be accessed via highorder correlations.

Sensitivity to the radial structure

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Relate to neutron skin: $\Delta r_{np} = \langle r_n \rangle^{1/2} - \langle r_p \rangle^{1/2}$ $\begin{array}{c} charge \\ \hline \Delta r_{np,Ru} - \Delta r_{np,Zr} \propto (R_0 \Delta R_0 - R_{0p} \Delta R_{0p}) + 7/3\pi^2 (a\Delta a - a_p \Delta a_p) \\ \hline mass \end{array}$

Sensitivity to radial structure

Separating shape and size effects

Nuclear skin contributes to $v_2^{rp} \sim v_2\{4\}$, deformation contribute to fluctuations

$$\left\langle v_{2}^{2}
ight
angle = \underbrace{\left(v_{2}^{\mathrm{rp}}
ight)^{2}}_{\mathrm{mean}} + \underbrace{\delta^{2}}_{\mathrm{fluctuat}}$$

mean

fluctuations

29

Separating shape and size effects

Large *a*₀

v_{2y}

(a)

Nuclear skin contributes to $v_2^{rp} \sim v_2\{4\}$, deformation contribute to fluctuations

30

v_{2x}

Neutron skin in high-energy collisions

PREX and CREX has tension with theory and previous exp. Indicate a larger L value.

 $\Delta r_{
m np,Pb} = 0.28 \pm 0.07 {
m fm}
onumber \ \Delta r_{
m np,Ca} = 0.14 \pm 0.03 {
m fm}$

• Access the difference of neutron skin by comparing 40Ca+40Ca and 48Ca+48Ca

We know:

w:
$$egin{aligned} &\sqrt{\langle r_{
m p}^2
angle}ig(^{48}{
m Ca}ig) = \sqrt{\langle r_{
m p}^2
angle}ig(^{40}{
m Ca}ig) \ &\sqrt{\langle r_{
m p}^2
angle}ig(^{40}{
m Ca}ig) pprox \sqrt{\langle r_{
m n}^2
angle}ig(^{40}{
m Ca}ig) \end{aligned}$$

Hence :

$$egin{aligned} \Delta_{
m np}ig(^{48}{
m Ca}ig) & - \Delta_{
m np}ig(^{40}{
m Ca}ig) \simeq \Delta_{
m np}ig(^{48}{
m Ca}ig) \ & \propto ar{R}_0\Delta R_0 + 7/3\pi^2ar{a}\Delta a \end{aligned}$$

Summary and outlook

- High-energy collisions image nuclear shape at ultra-short time scale of 10⁻²⁴s; Large particle multiplicity enables many-particle correlation event-by-event to probe many-nucleon correlations in nuclei (relatively more challenging to measure in low energy).
- Collisions of carefully-selected isobar species (at LHC) can reveal the many-body nucleon correlations & constrain the heavy ion initial condition from small to large nuclei

A	isobars	A	isobars	A	isobars	A	isobars	A	isobars	A	isobars
36	Ar, S	80	Se, Kr	106	Pd, Cd	124	Sn, Te, Xe	148	Nd, Sm	174	Yb, Hf
40	Ca, Ar	84	Kr, Sr, Mo	108	Pd, Cd	126	Te, Xe	150	Nd, Sm	176	Yb, Lu, Hf
46	Ca, Ti	86	Kr, Sr	110	Pd, Cd	128	Te, Xe	152	Sm,Gd	180	Hf, W
48	Ca, Ti	87	Rb, Sr	112	Cd, Sn	130	Te, Xe, Ba	154	Sm,Gd	184	W, Os
50	$\mathrm{Ti},\mathrm{V},\mathrm{Cr}$	92	Zr, Nb, Mo	113	Cd, In	132	Xe, Ba	156	Gd,Dy	186	W, Os
54	Cr, Fe	94	Zr, Mo	114	Cd, Sn	134	Xe, Ba	158	Gd,Dy	187	Re, Os
64	Ni, Zn	96	Zr, Mo, Ru	115	In, Sn	136	Xe, Ba, Ce	160	Gd,Dy	190	Os, Pt
70	Zn, Ge	98	Mo, Ru	116	Cd, Sn	138	Ba, La, Ce	162	Dy,Er	192	Os, Pt
74	Ge, Se	100	Mo, Ru	120	Sn, Te	142	Ce, Nd	164	Dy,Er	196	Pt, Hg
76	Ge, Se	102	Ru, Pd	122	Sn, Te	144	Nd, Sm	168	Er,Yb	198	Pt, Hg
78	Se, Kr	104	Ru, Pd	123	Sb, Te	146	Nd, Sm	170	Er,Yb	204	Hg, Pb

TABLE I. Pairs and triplets of stable isobars (half-life > $10^8 y$). 141 nuclides are listed. The region marked in red contains large strongly-deformed nuclei ($\beta_2 > 0.2$). The region marked in blue corresponds to nuclides which may present an octupole deformation in their ground state [48].

32

arXiv:2102 08158

Build multi-particle correlators (moments) over these events

Relating final state to initial condition

Linear correlation allows directly mapping the final state observables to geometrical properties in the initial condition breaks down at low energy

0.3

 ϵ_2

n=2

0.4

sBC $\eta/s = 0.16$ 20 - 30 %

0.6

0.5