Phase Transition - 00 (Gen. Intro.)

Wednesday, July 19, 2023 7:48 AM

Contact:

Reference:

- 查峰 兰州大学 lifengphysics@gmail.com
- <Scaling and Renormalization in Statistical Physics> by John Cardy
- <相变与临界现象>郝柏林
- <Statistical Mechanics> by Pathria

General Introduction on Phase Transition

Symmetry & Order-Parameter

•	List:	(0)-0	H=-3 5+ 52		
	Symmetry	Order-Parameter	Phase-Transition	Breaking terms	
	$Z_2: x \to -x$	$\langle S_z \rangle$	Para-ferromagnetic (Ising model)	h _z S _z	
	(Approx.)	$\rho_{liq.} - \rho_{gas}$	Liquid-Gas I Clase to CEP	μρ	
	m-ma-0	$\langle \bar{q}q \rangle$	chiral	$m\langle \bar{q}q \rangle$	F
	$Z_3: z - e^{2i\pi/3}z$	Polyakov-loop	Confine-deconfinement		
	$O(2): z \rightarrow e^{i\theta}z$	$\langle S_x + iS_y \rangle$	Superfluid (XY-model)		Ŀ
	$O(3): \vec{r} \rightarrow O(3)\vec{r}$	$\langle \vec{S} \rangle$	Para-ferromagnetic (Heisenberg model)	$\vec{h} \cdot \vec{S}$	
	$0(\infty): \vec{r} \to 0(\infty)\vec{r}$		Polymer chain		

- Phase transition: Spontaneous symmetry breaking \Rightarrow order paramter from 0 to finite Dining table senario $(Z_2, 1-D)$: Initially, you have a pair of chopsticks on your right hand side, and another pair on your left hand side. \Rightarrow Left-right symmetry in system After someone pick-up the pair on his/her left hand side, everyone follows. ⇒ left-right symmetry breaks down. https://www.zhihu.com/question/403076246/answer/1308003563
- Classification of phase transition $(t \equiv T/T_c 1)$: Cross-over:
 - with t &h, order paramter transforms continuously and smoothly h • 1st order:
 - with t, order parameter jumps from 0 to finite With h, jumps from one value to the other
 - Critical point:
- with t, order parameter transforms continuously but not smoothly from 0 to finite $|\xi| \subset |W|$ with h, transforms from $-\langle 0 \rangle$ to $\langle 0 \rangle$ with an paintic slope at $h = 0 \Rightarrow \chi \equiv \partial \langle 0 \rangle /\partial h|_{h=0} = \infty$

h

(MB=0)

+

3 79

Correlation length: Length scale that the FLUCTUATIONs are correlated In a normal phase: Close to the microscopic scale $(\xi \sim a)$ ₂Closed to critical point: much larger than the microscopic scale $(\xi \gg a)$ Anomalous dimension: near CEP, ξ is the ONLY large scale. If only the IR physics is concerned, one can write down any quantity F as $F = F(\xi) = \xi^2$, with '?' obtained via dimension analysis. e.g., $[\chi] = -2 \Rightarrow \chi \propto \xi^2 (\chi$ diverges at CEP). But in fact, $\chi \propto \xi^{2-\eta}$ Origin of $\eta: \chi(\xi) \to \chi(\xi; a/\xi) \propto \xi^2 (\overline{a}/\xi)^{\eta}$ 11

• Critical exponents:
• Heat capacity:
$$C \sim A_{\pm} |t|^{-\alpha} (\alpha_{+} = \alpha_{-}, h = 0)$$

• Order parameter:
• $(0) \propto (-t)^{\beta} (h = 0)$
• $(0) \propto |h|^{\delta} (t = 0)$
• Susceptibility: $\chi \propto |t|^{\gamma} (h = 0)$

• Correlation length:
$$\xi \propto |t|^{-\nu}$$
 (h=0)

- Correlation EXACTLY @ CEP: $G(r) \sim r^{-(d-2-\eta)}$
- "hydro hydro + • Relaxation: $\tau \propto \xi^{z}$ (critical slowing down)

Target:

- A general picture of phase transition (symmetry, order parameter, ...)
- Hamiltonian → Phase diagram (Under M.F. approx.)
 1st order phase transition (spinodal instability, metastable,)
- Critical phenomena (scaling, univisality, RG→Critical exponents, slowing...)

Observables

General Introduction on Phase Transition

Lee-Yang Theory:

- Analytical continuation on parameters q (temperature or coupling constant e.g.,) in partition functions Z(q). to a complex number.
- Find q^* satisfies $Z(q^*) = 0 \Rightarrow F \not\subset f_{q^*}$ Phase transition occurs if q^* is real & positive.
- Example (1-d Ising model): H=-56:6:4 $-T \ln Z(j) = -NT(j + \ln(1 + e^{-2j}))$ j= 74 (Ruhin) Thz(j) 1=+00 2

General Introduction on Phase Transition

A mean field view

