介质中的形状因子

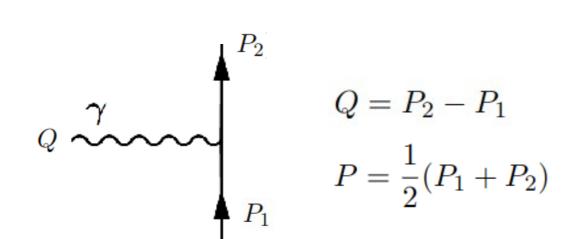
林树 中山大学

中高能核物理暑期学校,山东大学,青岛, Jul 20, 2023

Outline

- Why form factors?
- Spin polarization in heavy ion collisions and form factors in medium
- Form factors description of spin couplings
- Electromagnetic form factors in vacuum and in medium
- Gravitational form factors in vacuum and in medium
- Summary

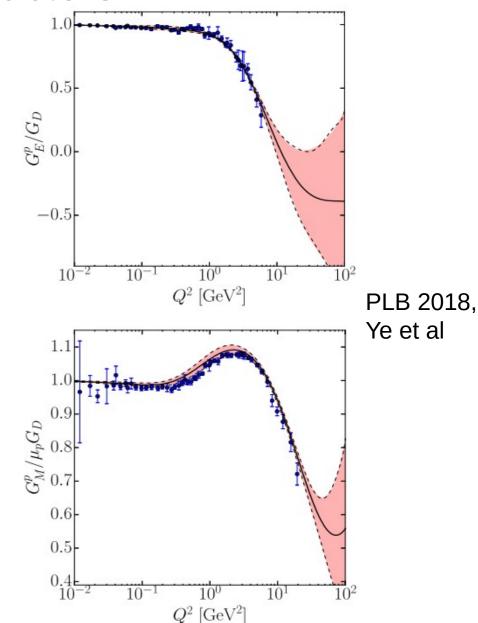
Electromagnetic form factors



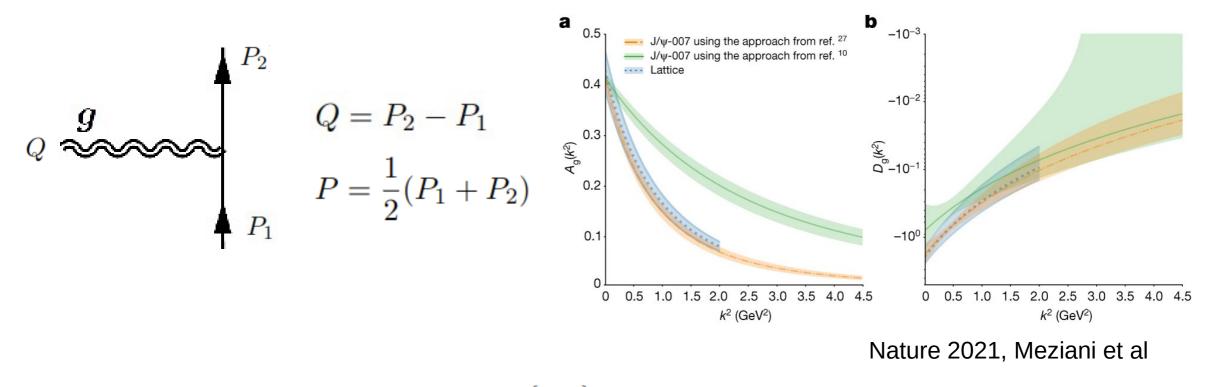
$$\langle P_2 | J^{\mu}(Q) | P_1 \rangle = \bar{u}(P_2) \Big[\gamma^{\mu} F_1(Q^2) + \frac{i \sigma^{\mu\nu} Q_{\nu}}{2m} F_2(Q^2) \Big] u(P_1)$$

= $\bar{u}(P_2) \Big[\frac{P^{\mu}}{m} G_E(Q^2) + \frac{i \epsilon^{\mu\nu\rho\sigma} Q_{\nu} P_{\rho} \gamma_{\sigma} \gamma^5}{2m^2} G_M(Q^2) \Big] u(P_1)$

Form factors parameterize interaction based on symmetry ➢ accessible experimentally
➢ charge distribution, magentic moment



Gravitational form factors



$$\langle P_2 | T^{\mu\nu}(Q) | P_1 \rangle = \bar{u}(P_2) \Big[\frac{P^{\mu} P^{\nu}}{m} A(Q^2) + \frac{i P^{\{\mu} \sigma^{\nu\}\rho} Q_{\rho}}{2m} J(Q^2) + \frac{Q^{\mu} Q^{\nu} - \eta^{\mu\nu} Q^2}{4m} D(Q^2) \Big] u(P_1)$$

Form factors parameterize interaction based on symmetry → accessible experimentally → mass distribution, gravitomagnetic moment, internal structures

Gravitomagnetic moment

$$\langle P_2 | T^{\mu\nu}(Q) | P_1 \rangle = \bar{u}(P_2) \Big[\frac{P^{\mu} P^{\nu}}{m} A(Q^2) + \frac{i P^{\{\mu} \sigma^{\nu\}\rho} Q_{\rho}}{2m} J(Q^2) + \frac{Q^{\mu} Q^{\nu} - \eta^{\mu\nu} Q^2}{4m} D(Q^2) \Big] u(P_1)$$

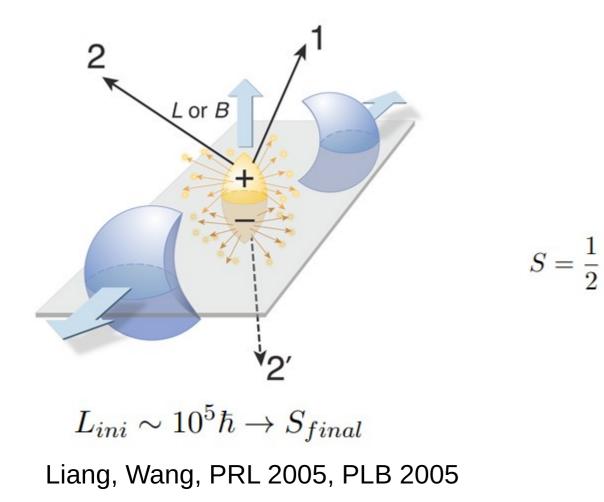
introduce metric perturbation $h_{0i}(t,x) = v_i(t,x)$

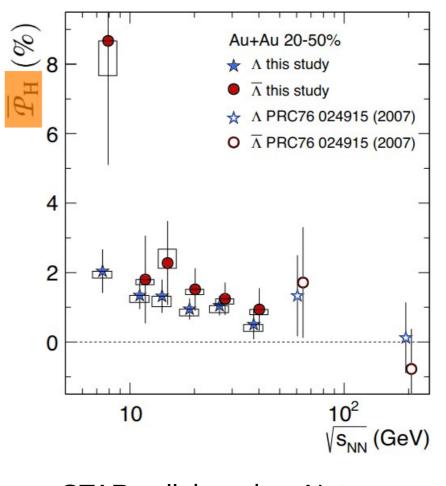
$$i\mathcal{M} \sim \bar{u}(P)\sigma_k u(P)i\epsilon^{ijk}q_j v_i \sim \vec{S} \cdot \vec{\omega}$$

 \vec{S} spin $\vec{\omega}$ rotational angular velocity

 $J(Q^2 \rightarrow 0)$ gravitomagnetic moment

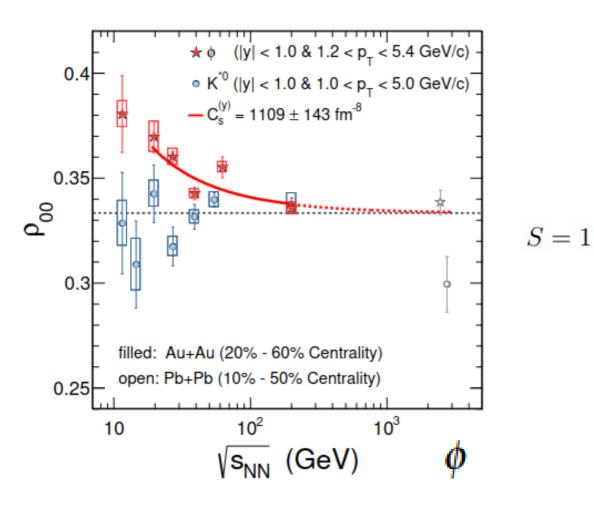
global spin polarization in heavy ion collisions





STAR collaboration, Nature $e^{-\beta(H_0 - \mathbf{S} \cdot \boldsymbol{\omega})}$ 2017

global spin alignment in heavy ion collisions



$$\rho_{++} = \rho_{--} = \rho_{00} = \frac{1}{3}$$

vector mesons unpolarized

$$ho_{00} > 1/3$$
 vector mesons transversely polarized

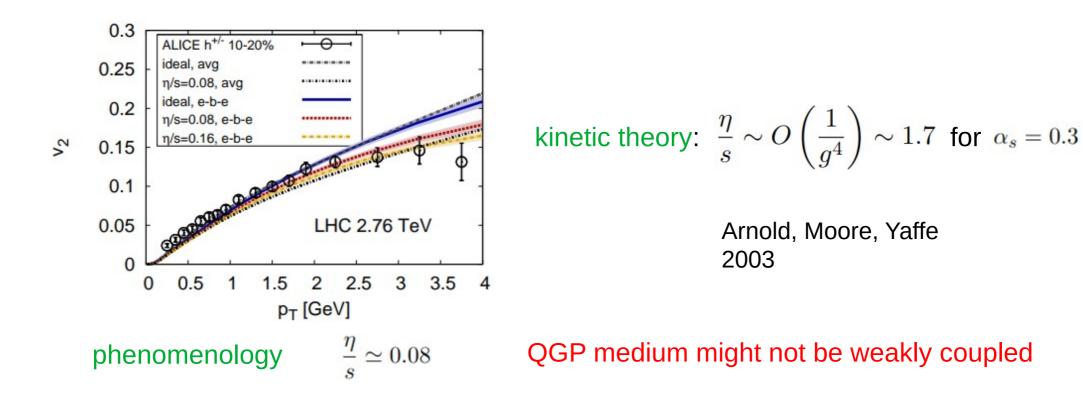
STAR collaboration, Nature 2023

Quantum kinetic theory (QKT): pro and cons

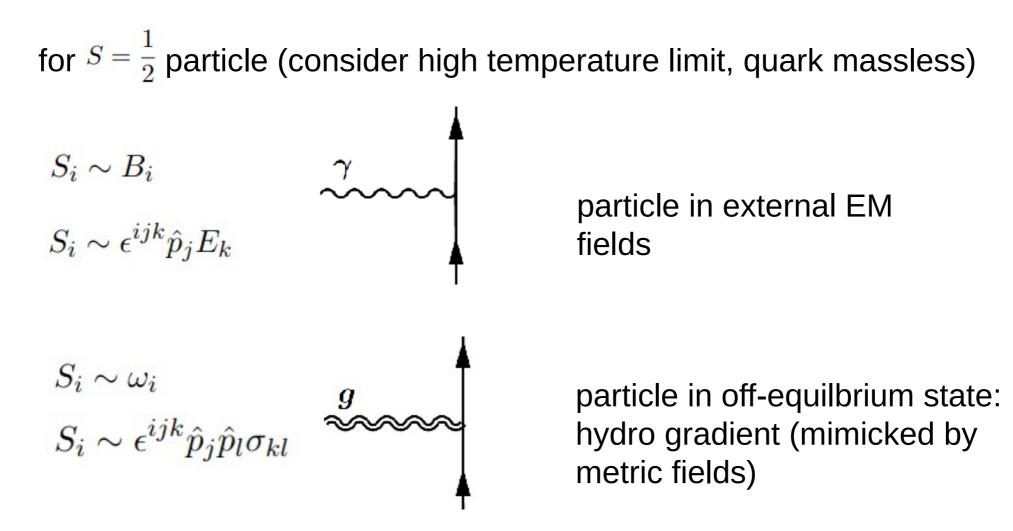
QKT=Boltzmann+spin

Hidaka, Pu, Wang, Yang, PPNP 2022

Pro: systemtic treatment of spin transport Cons: assumes medium weakly coupled, not well-justified for QGP



Spin polarization in heavy ion collisions



Spin polarization and correlation functions

Wigner function

$$S_{\alpha\beta}^{<}(X = \frac{x+y}{2}, P) = \int d^4(x-y)e^{iP\cdot(x-y)/\hbar} \left(-\langle \bar{\psi}_{\beta}(y)\psi_{\alpha}(x)\rangle\right)$$

 \succ particle in external EM fields

 $\langle S^{<}(X,P)\rangle_{\mathrm{eq},A_{\mu}}$

> particle in off-equilbrium state: hydro gradient

$$\langle S^{<}(X,P)\rangle_{\text{off-eq}} = \langle S^{<}(X,P)\rangle_{\text{eq},h_{\mu\nu}}$$

 $A_{\mu}, h_{\mu\nu}$ slow-varying $\partial_X \ll P$

Spin polarization from chiral kinetic theory

right-handed fermion
in EM fields
$$S^{<}(X = \frac{x + y}{2}, P) = \int d^{4}(x - y)e^{iP \cdot (x - y)/\hbar}U(y, x) \left(-\langle \psi^{\dagger}(y)\psi(x)\rangle\right)$$
gauge link
$$U(y, x) = \mathcal{P} \exp\left[-i\int_{x}^{y} dz^{\mu}A_{\mu}(z)\right]$$
$$S^{<} \equiv \bar{\sigma}_{\mu}S^{<\mu}$$
$$S^{<0} = -2\pi\left[\delta(P^{2})p_{0}f(p_{0}) + \frac{1}{2} \cdot \mathbf{B}\delta'(P^{2})f(p_{0})\right]$$
absorb e in E&B fields
$$S^{
$$O(\partial^{A}O)$$
E, B ~ O(\partial)
spin-magnetic spin Hall effect
coupling
Hidaka, Pu, Yang, PRD 2018$$

Gao, Liang, Wang, PRD 2019

Spin polarization from field theory

$$S^{<\mu} = -(S^{\mu}_{ra} - S^{\mu}_{ar})f(P_0)$$

$$\overrightarrow{r} = \overrightarrow{r} + \overrightarrow{r}$$

resummation to all order in A, and up to O(q) reproduces the collisionless CKT results

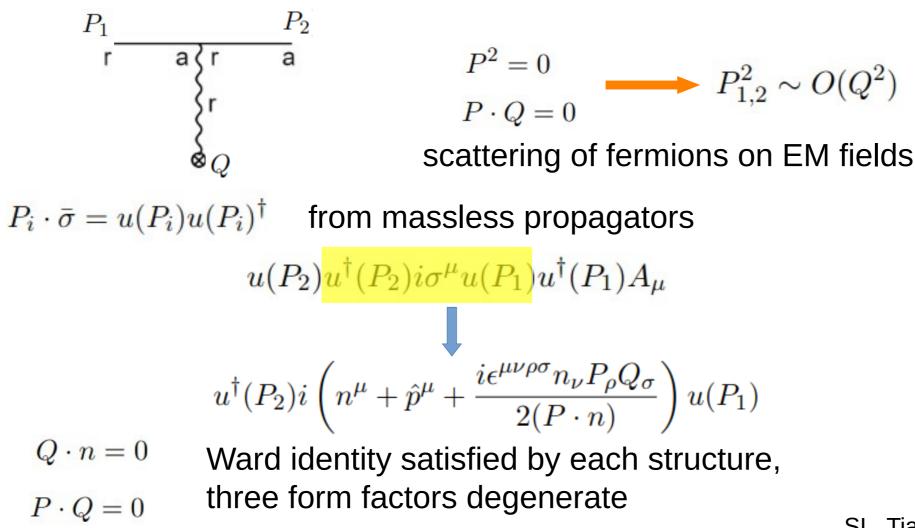
Two lessons:

 \succ CKT equivalent to the tree-level vertex (Lorentz invariant)

 \blacktriangleright Electric field can't do work to fermion (implicit in CKT)

no-work $E^{\mu} = F^{\mu\nu} n_{\nu}$ $Q \cdot n = 0$ static n^{μ} spin frame vectorcondition $E \cdot P = 0$ $P \cdot Q = 0$ orthogonalSL, Tian, 2306.14811

EM form factors in vacuum



What to expect for FF in medium?

What is in-medium FF?

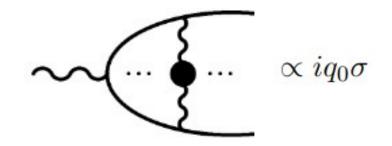
 \succ parameterize scattering of medium with external fields in medium

 \succ both vertex and fermion states corrected by the medium interaction

Difference from vacuum FF

breaking of Lorentz invariance, more structures possible

 \blacktriangleright dissipation effect introduces non-hermiticity, complex form factors



EM form factors in medium

$$\begin{split} n^{\mu} &\to u^{\mu} \quad \text{medium frame vector} \\ \Gamma^{\mu} &= F_{0}u^{\mu} + F_{1}\hat{p}^{\mu} + F_{2}\frac{i\epsilon^{\mu\nu\rho\sigma}u_{\nu}P_{\rho}Q_{\sigma}}{2(P\cdot u)^{2}} \\ S^{<0} &= F_{2}\left(\overrightarrow{\vec{p}\cdot\vec{B}}\right)2\pi\delta'(P^{2})f(p_{0}) \\ S^{$$

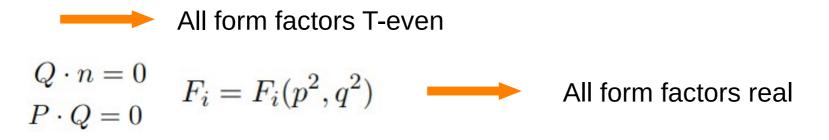
medium interaction can lift the degeneracy of form factors

SL, Tian, 2306.14811

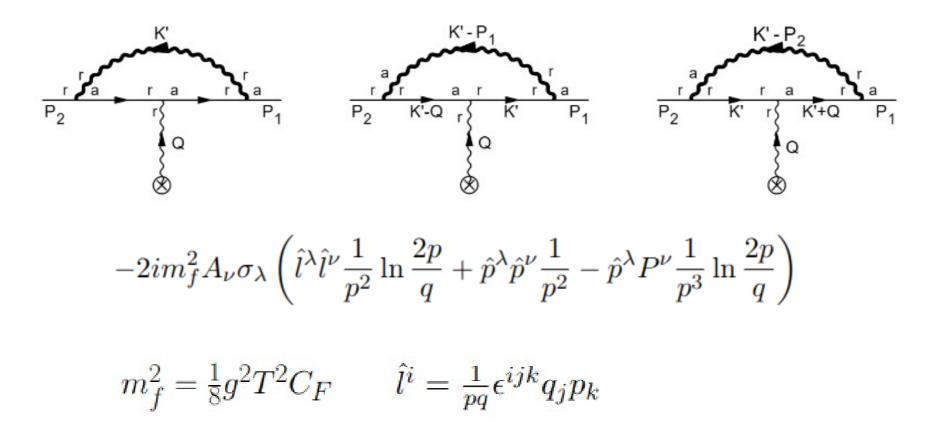
Transformation under time-reversal

$$\Gamma^{\mu} = F_0 u^{\mu} + F_1 \hat{p}^{\mu} + F_2 \frac{i \epsilon^{\mu\nu\rho\sigma} u_{\nu} P_{\rho} Q_{\sigma}}{2(P \cdot u)^2}$$

$$\Gamma^0 \quad \text{T-even} \qquad \Gamma^i \quad \text{T-odd}$$



Example of medium correction to EMFF: vertex

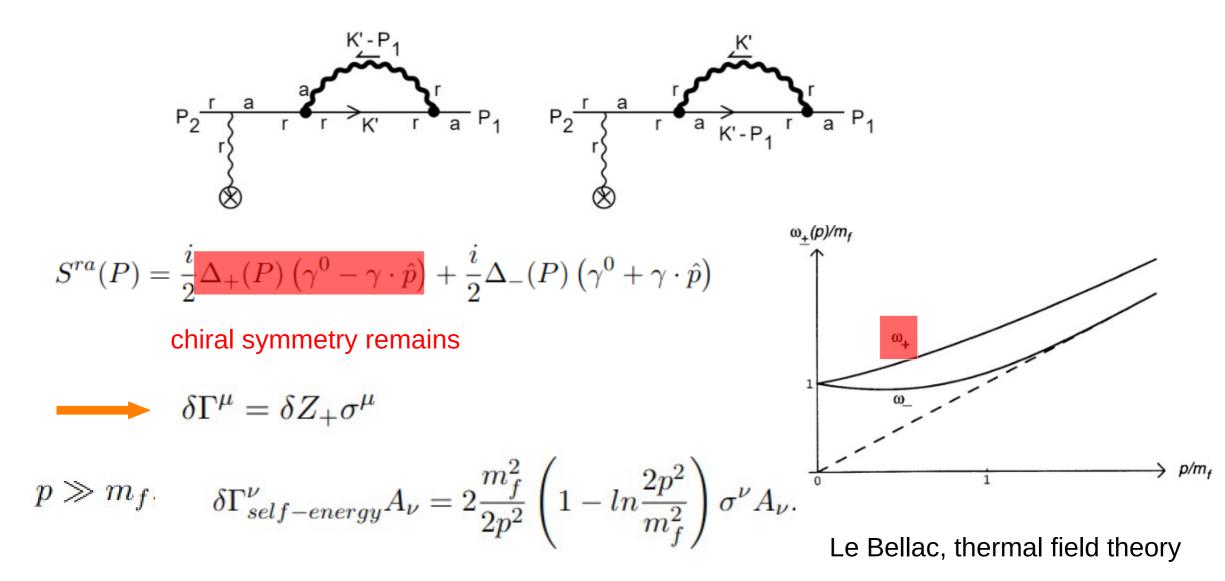


simplificaitons

medium contribution only (HTL)
 leading contributions as $q \rightarrow 0$

SL, Tian, 2306.14811

Example of medium correction to EMFF: self-energy



Example of medium correction to EMFF: sum

$$\delta F_0 = \frac{2m_f^2}{p^2} X + \frac{m_f^2}{p^2} \left(1 - \ln \frac{2p^2}{m_f^2} \right),$$

$$\delta F_1 = \frac{2m_f^2}{p^2} (X - 1) + \frac{m_f^2}{p^2} \left(1 - \ln \frac{2p^2}{m_f^2} \right),$$

$$\delta F_2 = \frac{2m_f^2}{p^2} X + \frac{m_f^2}{p^2} \left(1 - \ln \frac{2p^2}{m_f^2} \right),$$

$$X = \frac{1}{2} \left(2 \ln \left(\frac{pT}{2} \right) + \ln \left(\frac{2pT}{2} \right) - 36 \ln(A) \right)$$

spin Hall effect

spin-perpendicular magnetic coupling

spin-parallel magnetic coupling

$$X = \frac{1}{6} \left(2\ln\left(\frac{pT}{m_f^2}\right) + \ln\left(\frac{2pT}{m_g^2}\right) - 36\ln(A) + \ln\left(16\pi^3\right) + 3 \right)$$

➤all form factors real

 \triangleright partial lift of the degeneracy $\delta F_1 \neq \delta F_2 = \delta F_0$

Gravitational FF in vacuum

 $\begin{array}{ll} \mbox{FF for massless case} & Q \to 0 & \mbox{ignore D-term} \\ \\ \langle P_2 | T^{\mu\nu}(Q) | P_1 \rangle = \bar{u}(P_2) \bigg[A(Q^2) \frac{P^{\mu}P^{\nu}}{P \cdot n} \pm B(Q^2) \frac{-iP^{\{\mu}\epsilon^{\nu\}\lambda\sigma\rho}\gamma_{\lambda}n_{\sigma}Q_{\rho}}{P \cdot n} \bigg] u(P_1) \end{array}$

compared to massive case

$$\langle P_2 | T^{\mu\nu}(Q) | P_1 \rangle = \bar{u}(P_2) \Big[\frac{P^{\mu} P^{\nu}}{m} A(Q^2) + \frac{i P^{\{\mu} \sigma^{\nu\}\rho} Q_{\rho}}{2m} J(Q^2) + \frac{Q^{\mu} Q^{\nu} - \eta^{\mu\nu} Q^2}{4m} D(Q^2) \Big] u(P_1)$$

tree-level
$$T^{\mu\nu} = \frac{i}{2}\bar{\psi}\left(\gamma^{\{\mu}\partial^{\nu\}} - \gamma^{\{\mu}\overleftarrow{\partial}^{\nu\}}\right)\psi$$

$$A = 1 \quad B = -\frac{1}{2}$$

metric perturbation $h_{0i}(t,x) = v_i(t,x)$ $i\mathcal{M} \sim \bar{u}(P)\sigma_k u(P)i\epsilon^{ijk}q_jv_i \sim \vec{S}\cdot\vec{\omega}$

spin-vorticity coupling

SL, Tian, 2302.12450

Gravitational FF in medium

Einstein equivalence principle $B(Q^2 = 0) = -\frac{1}{2}$

spin-vorticity coupling non-renormalized?

medium breaks Lorentz invariance, violating equivalence principle!

Donoghue et al 1984, 1985 Buzzegoli, Kharzeev, PRD 2021 SL, Tian, 2302.12450

$$\Gamma^{\mu\nu} = \gamma \cdot \hat{p} \left(F_0 u^{\mu} u^{\nu} + F_1 u^{\{\mu} \hat{p}^{\nu\}} + F_2 \hat{p}^{\mu} \hat{p}^{\nu} \right) + \gamma \cdot \hat{l} \left(F_3 \hat{p}^{\{\mu} \hat{l}^{\nu\}} + F_4 u^{\{\mu} \hat{l}^{\nu\}} \right)$$
$$\hat{l}_i = \epsilon^{ijk} \hat{q}_j \hat{p}_k \qquad \text{no-work condition} \qquad q_0 = 0 \quad P \cdot Q = 0$$

five structures, each satisfies energy-momentum conservation

Gravitational FF in medium: example

 $\delta\Gamma^{\mu\nu} = m_{f}^{2} \Big[-\gamma \cdot \hat{p}P^{\mu}P^{\nu} \frac{\ln\frac{2p}{q}}{p^{3}} - \gamma \cdot \hat{l}P^{\{\mu}\hat{l}^{\nu\}} \frac{\ln\frac{2p}{q}}{p^{2}} + \gamma \cdot \hat{p} \left(2u^{\mu}u^{\nu} + u^{\{\mu}\hat{p}^{\nu\}} + \hat{p}^{\mu}\hat{p}^{\nu} \right) \frac{1}{p} + 2\gamma \cdot \hat{l}\hat{l}^{\{\mu}\hat{p}^{\nu\}} \Big]$

self-energy

$$\delta\Gamma^{\mu\nu} = \delta Z_+ \gamma^{\{\mu} P^{\nu\}} \qquad \delta Z_+ = \frac{m_f^2}{2p^2} \left(1 - \ln \frac{2p^2}{m_f^2} \right)$$

Application: spin-vorticity coupling receives multiplicative renormalization

e.g. p = 500 MeV T = 150 MeV $\alpha_s = 0.3$ 7% suppression of spin-vorticity coupling

SL, Tian, 2302.12450

Summary

- Spin polarization from CKT reproduced using tree-level field theory, and reformulated with form factors
- Form factors in vacuum generalized to form factors in medium
- In-medium electromagnetic FF lift degeneracy of spin magnetic coupling and spin Hall effect
- In-medium gravitational FF leads to suppression of spin-vorticity coupling

Outlook

- Dissipation effect: complex FF
- Applications to spin polarization in heavy ion collisions

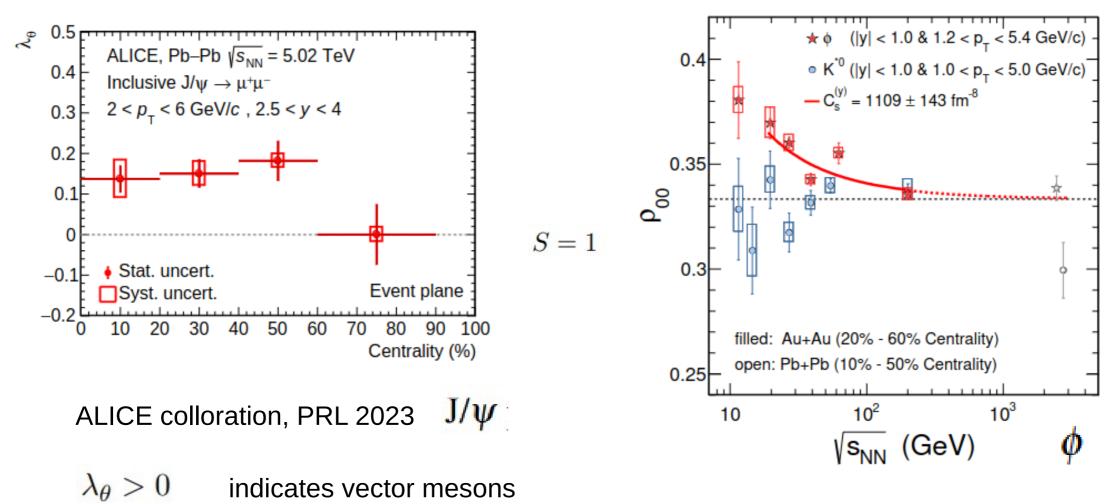
Thank you!

Spin Hall effect

$$\dot{x} = \hat{p} + \dot{p} \times b;$$

$$\dot{p} = E + \dot{x} \times B.$$

global spin alignment in heavy ion collisions



 $ho_{00} > 1/3$ transversely polarized

STAR collaboration, Nature 2023