Exploring critical piont by light nuclei production in relativistic heavy-ion collision

Shengnan Han, Feng Li

Outline

Introduction

The calculation of $C_2(x_1, x_2)$

The calculation of $C_3(x_1, x_2, x_3)$

The yield ratio $N_t N_p / N_d^2$ of the light nuclei Summary

Overview of QCD Phase Diagram

Overview of QCD Phase Diagram

$$\frac{N_t N_p}{N_d^2} \approx \frac{1}{2\sqrt{3}} \left[1 + \Delta \rho_n + \frac{\lambda}{\sigma} G\left(\frac{\xi}{\sigma}\right) \right]$$

FIG. 1: The dependence of the function $G(\xi/\sigma)$ on the correlation length ξ with σ being the width parameter in the deuteron or triton Wigner function.

Sun, K. J., Li, F., & Ko, C. M. (2021). Effects of qcd critical point on light nuclei production. Physics Letters B, 816(30), 136258. 5

Overview of QCD Phase Diagram

$$N_d \approx N_d^{(0)} + \frac{3}{2^{1/2}} \left(\frac{2\pi}{mT}\right)^{3/2} \times \int d^3 x_1 \, d^3 x_2 C_2(x_1, x_2) \frac{e^{-\frac{(x_1 - x_2)^2}{2\sigma_d^2}}}{(2\pi\sigma_d^2)^{\frac{3}{2}}}$$

$$N_t \approx N_t^{(0)} + \frac{3^{3/2}}{4} \left(\frac{2\pi}{mT}\right)^3 \int d^3 x_1 d^3 x_2 d^3 x_3 \rho_{nnp}(x_1, x_2, x_3) \times \frac{e^{-\frac{(x_1 - x_2)^2}{2\sigma_t^2} \frac{(x_1 + x_2 - 2x_3)^2}{6\sigma_t^2}}}{3^{3/2} (\pi \sigma_t^2)^3}$$

Three-nucleon joint ensity distribution function:

 $\rho_{nnp}(x_1, x_2, x_3) \approx \rho_n(x_1)\rho_n(x_2)\rho_p(x_3) + C_2(x_1, x_2)\rho_p(x_3) + C_2(x_2, x_3)\rho_n(x_1) + C_2(x_3, x_1)\rho_n(x_2) + C_3(x_1, x_2, x_3)\rho_n(x_1) + C_3(x_1, x_2, x_3)\rho_n$

Using the nucleon coalescence model, which can naturally take into account the correlations in the nucleon density distribution

The number of the light nuclei

The number of deuteron

The number of triton

$$N_d \approx N_d^{(0)} \left(1 + \frac{\alpha^2}{N_p \langle \rho_n \rangle} G_{c2} \right)$$

$$N_d^{(0)} = \frac{3}{2^{1/2}} \left(\frac{2\pi}{mT}\right)^{3/2} N_p \langle \rho_n \rangle$$

$$G_{c2} \approx \left(-\frac{1}{2}\alpha\right)^{-2} \int d^3 x_1 \, d^3 x_2 C_2(x_1, x_2) \frac{e^{-\frac{(x_1 - x_2)^2}{2\sigma_d^2}}}{(2\pi\sigma_d^2)^{\frac{3}{2}}}$$

$$N_t = N_t^{(0)} \left[1 + \frac{1}{N_p \langle \rho_n \rangle^2} \left(12\sigma_t^{-2}\rho(-\frac{1}{2}\alpha)^2 G_{c2} + (-\frac{1}{2}\alpha)^3 G_{c3} \right) \right]$$

$$N_t^{(0)} = \frac{3^{3/2}}{4} \left(\frac{2\pi}{mT}\right)^3 N_p \langle \rho_n \rangle^2$$

$$G_{C3} \approx \left(-\frac{1}{2}\alpha\right)^{-3} \int d^3 x_1 d^3 x_2 d^3 x_3 C_3(x_1, x_2, x_3) \times \frac{1}{3^{3/2}(\pi\sigma_t^2)^3} e^{-\frac{(x_1 - x_2)^2}{2\sigma_t^2} - \frac{(x_1 + x_2 - 2x_3)^2}{6\sigma_t^2}}$$

7

The calculation of $C_2(x_1, x_2)$

Martinez, M., Schaefer, T., & Skokov, V. (2019). Critical behavior of the bulk viscosity in qcd.

The calculation of $C_2(x_1, x_2)$

2. $C_2(X_1, X_2)$ can be transferred into

$$c_2^n(x_1, x_2) = \left(-\frac{1}{2}\alpha\right)^2 \int \frac{d\omega_1 d\omega_2 d^3 \overrightarrow{k_1} d^3 \overrightarrow{k_2}}{(2\pi)^8} e^{-i\left(\overrightarrow{k_1} + \overrightarrow{k_2}\right)(\overrightarrow{x_1} - \overrightarrow{x_2})} \Delta_s\left(\omega_1, \overrightarrow{k_1}\right) \Delta_s\left(\omega_2, \overrightarrow{k_2}\right)$$

where

$$\begin{split} \Delta_{s}(\omega,k) &= 2\chi_{k}T\frac{\Gamma_{k}}{\omega^{2}+\Gamma_{k}^{2}} & \Gamma_{k} = \frac{T\xi^{-3}}{6\pi\eta_{0}}K(k\xi)\chi_{k} = \frac{\chi_{0}}{1+(k\xi)^{2\eta}} & \xi = \xi_{0}R^{-\nu}g_{\xi}^{1/2}(\theta) \\ K(x) &= \frac{3}{4}\left\{ \left[1+x^{2}+(x^{3}+x^{-1})arctan(x) \right] \right\} & g_{\xi}(\theta) \simeq (1-5\theta^{2}/18) \end{split}$$

3. Transforming (R, θ) into $(\overline{\mu}, t)$ coordinate system

$$\begin{pmatrix} t \\ \overline{\mu} \end{pmatrix} \approx \begin{pmatrix} 0 & 1 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} r \\ h \end{pmatrix} \qquad \begin{array}{c} r = R(1 - \theta^2) & h = h_0 R^{\beta \delta} \tilde{h}(\theta) \\ \xi = \xi_0 R^{-\nu} g_{\xi}^{1/2}(\theta) & \tilde{h}(\theta) = \theta + h_1 \theta^3 + h_2 \theta^5 \end{array}$$

The calculation of $C_2(x_1, x_2)$

The $C_2(x_1, x_2)$ contribution to the number of the light nuclei

$$G_{c2} \approx \left(-\frac{1}{2}\alpha\right)^{-2} \int d^3 x_1 \, d^3 x_2 C_2(x_1, x_2) \frac{e^{-\frac{(x_1 - x_2)^2}{2\sigma_d^2}}}{(2\pi\sigma_d^2)^{\frac{3}{2}}}$$

FIG. 1. (Color online)Contour plot of the temperature and chemical potential dependent the G_{C2} near the CEP.

The calculation of $C_3(x_1, x_2, x_3)$

The $C_3(x_1, x_2, x_3)$ contribution to the number of the light nuclei

$$G_{C3} \approx \left(-\frac{1}{2}\alpha\right)^{-3} \int d^3 x_1 d^3 x_2 d^3 x_3 C_3(x_1, x_2, x_3) \times \frac{1}{3^{3/2}(\pi\sigma_t^2)^3} e^{-\frac{(x_1 - x_2)^2}{2\sigma_t^2} - \frac{(x_1 + x_2 - 2x_3)^2}{6\sigma_t^2}}$$

FIG. 2. (Color online)Contour plot of the temperature and chemical potential dependent the G_{C3} near the CEP.

The behavior of G_{C2} and G_{C3} near the CEP

FIG. 1. (Color online)Contour plot of the temperature and chemical potential dependent the G_{C2} near the CEP.

FIG. 2. (Color online)Contour plot of the temperature and chemical potential dependent the G_{C3} near the CEP.

The yield ratio $N_t N_p / N_d^2$ of the light nuclei

The yield ratio $\frac{N_t N_p}{N_d^2}$ will show a maximum behavior near CEP when $0 < \alpha$

< 0.97, and a minimum behavior near CEP when α > 1.16

FIG. 3. (Color online)Contour plot of the temperature and chemical potential dependent the yield ratio $N_t N_p / N_d^2$ when $\alpha = 0.5$ near the CEP.

FIG. 4. (Color online)Contour plot of the temperature and chemical potential dependent the yield ratio $N_t N_p / N_d^2$ when $\alpha = 2.5$ near the CEP.

0.55

0.50

0.45

0.40

(1) Based on a map between QCD and Ising model, we calculate $C_2(x_1, x_2)$ and $C_3(x_1, x_2, x_3)$, and investigate their contributions to the light nuclei yields in the vicinity of CEP. (2) The yield ratio $N_t N_p / N_d^2$ shows a maximum at CEP when $0 < \alpha < 0.97$, and a minimum at CEP when $\alpha > 1.16$

