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Entropy	per	nucleon
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Isobaric yield ratio of t/He

§  t and He are produced using the coalescence model
§ Stiffer symmetry energy gives smaller t/He ratio
§ t/He ratio increases (soft symmetry energy) but slightly decreases 
   (stiff symmetry energy) with their kinetic energies

Chen, Li &Ko, PRC 68, 017601 (2003); NPA 729, 809 (2003)
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Yield ratio of 𝑵𝒕𝑵𝒑/𝑵𝒅𝟐  in Au+Au collisions at RHIC 

STAR Collaboration, PRL 130, 202301 (2023)

§ Enhanced yield ratio of 𝑁𝑡𝑁𝑝/𝑁!# at 𝑠$$ ≈ 25	GeV in central 
     Au+Au collisions, compared to non-central collisions.      



5Sun, Ko & Lin, PRC 103, 064909 (2021); AMPT

Zhao, Shen, Ko, Liu & Song, PRC 102, 
044912 (2020).  IEBE+MUSIC+UrQMD

Liu, Zhang, He,  Sun, Yu, Luo, PLB  805, 
135452 (2020): JAM

Deng & Ma, PLB 808, 135668 (2020): UrQMD 

Beam-energy dependence of ⁄𝑵𝒕𝑵𝒑 𝑵𝒅𝟐  from theoretical models



Neutron relative density fluctuation from yield ratio of light nuclei
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§ Expect a similar behavior for         from u-quark density fluctuation.          6

Sun, Chen, Ko & Xu, PLB 774, 103 (2017) 

α: correlation factor

TC ≈ 144 MeV
μC ≈ 385 MeV
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Quark matter phase diagram in the NJL model
<latexit sha1_base64="jE3E4j0z1ssJfqOsOe2Ui/lIXY4="></latexit>
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@tf + p/E ·rf �rH ·rpf = C[f ]

Transport description of quark matter in a box based on NJL

C[f] includes quark elastic scattering with cross section of 3 mb
§ Left: nq = 0.4/fm3,
     T = 100 MeV; outside
     spinodal region
§ Right: nq = 0.4/fm3,
     T = 20 Mev, inside 
     spinodal region; 
     large density 
     fluctuations appear 
     due to growth of 
     unstable modes
§ Colored regions
     correspond to 
     Nq > 0.6/fm3

Feng & Ko, PRC  93, 035205 (16); 95, 055203 (17) 
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⁄𝑵𝒕𝑵𝒑 𝑵𝒅𝟐 	Enhancement due to chiral first-order trasnsition
Sun, Ko, Li, Xu & Chen, EPJA 57, 31 (2021)

AMPT with blast-wave initial conditions with T= 70 MeV and net quark 
density 1.5/fm3 and NJL based parton transport model
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The coalescence model

1) Butler and Pearson, PR 129, 836 (1963): Two nucleons coalescence
          into a deuteron with the nuclear matter acting as a catalyzer. In  
          second-order perturbation theory, 

     2) Schwalzschild and Zupancic, PR 129, 854 (1963): The deuteron-to-
          proton ratio is governed by the probability of finding a neutron
          within a small sphere of radius ρ around the proton in momentum
          space

DE UTERON 8 F ROM HIGH —ENERGY P ROTON BOM 8ARDMENT

can then be carried out quite simply, and we do so in
Sec. 4.
Consider two nucleons (neutron and proton) of

momenta Ak~ and Ak~, respectively, so that the initial
wave function fo is

&0= (1/L') exp[i(ki. ri+k2. r2)], (1)
where I is the linear dimension of a normalization cube.
The final wave function P describing a deuteron with
momentum K is then

l l

KI

i l

l

I I

l

, k,

g . .(~)~. (~)
fi .~&&&—P

E;—F.f
(4)

where H;,") and H, y") are first-order matrix elements
to and from an intermediate state j, respectively. We
devote the remainder of this section evaluating H;f ".
There are three types of contributions to (4), corre-

sponding to the three diagrams of Fig. 1. We consider
first the term, say [H;r"&)&, for which particle 1, with
wave vector ki, is scattered by V(ri) into an inter-
rnediate state, k~', and, thereafter, joined to particle 2
in a deuteron by &&(r). For this term we have

1
[II;,&'&]&——— dri exp[i(k&—k,') r,)V(ri)L'

1=—g(~ ki—ki' ~ ),II
where g is the Fourier transform of V.
Similarly, we have

[8&f&'&]&= dr&dr~ exp[i(ki' ri+k& r&)]I8LI/O
X&&(r)x(r) exp(—iK R)

(kr)~
b(K'—K) dr exp(—ik' r)&&(r)&&(r), (6)

L$LI/2

&t
= (1/LI&')&&(r) exp(iK R), (2)

where R is the c.m. coordinate -', (ri+r2), r is the relative
coordinate r~—r~, and g is the internal deuteron wave
function.
The transition probability ~(K)dK that after time t

the optical potential V(ri)+V(r2), combined with the
internal neutron-proton interaction n(r), produces a
deuteron of wave vector K in the interval dK is

41st" Izsin'(&w&ft)
&d(K)dK= p(K)dK.

ft' r&&;t'

Here H;f(" is the second-order matrix element involving
the product (V,&&), p(K) is the density of fi»al states,
and

kN;f= 8;—Ef,
where E; and Ef are the initial and final energies,
respectively.
The second-order matrix element H;f(') is given as

Fro. j.. Diagrams {a), {b), {c) illustrate the simplest means of
deuteron formation. RI, 4 are the momenta of the proton and
neutron in the initial state, q the recoil of the nucleus, and K the
deuteron momentum in the final state. In case {a) the neutron
and proton interact first with each other to form an intermediate
deuteron state. This deuteron is then scattered by the nucleus
into the final state. In case {b) the neutron is scattered into an
intermediate state by an interaction with the nucleus. The
scattered neutron and an unscattered proton then interact with
each other to form a deuteron. In case (c}a scattered proton pairs
with an unscattered neutron.

where
K'= k~'+k2

~&—~r= (ft'/m) f(sK—k2)'+v'] (10)
Thus after summing over intermediate states we

find our first contribution [H,r&'&)i as
4 C g(~K,—K~)[ff'i"']&=—,(11)
L'L'&2 [k,+-,' (K—K~)]'+y'

where
K;=kg+kg

k,= x, (ki—k2).
Thus K; arri k, are the initial c.rn. and internal wave
vectors of the two free nucleons.
The second contribution, [B;I&'&]~, with particie 2

being scattered into the intermediate state k2', is

k'= -', (k,'—kr).
If we write x(r) in the Hulthhn form

X(r) = (C/r) (e- " e '), --
the integral in (6) can be readily evaluated to be

—4W(A'/m) [1+(k"+~')/(k"+f')] (S)
where m is the nucleon mass, and A'y'/m is the deuteron
binding energy. We have actually found the e6ect of
the second term (involving f') to be quite small, and
hereafter employ simply the asymptotic form for the
deuteron wave function. For normalization of y we have

C' y'/2&r.

For the term under consideration, the energy
denominator E,—Ef is simply expressed by noting
that k&'——K—k2. We find

Nd(K) / [Np(K/2)]2

dNd(K)/dNp(K) / 4⇡⇢3

3
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From the energy-conservation factor in (17) we have

E,2=Ep 4(—I/,2+yp)~E2
and thus

x= P K—K, ~
E sin(e/2) Ee/2, (20)

where 0, the angle between I and K;, has very sma]1
contributing values.
After performing the integration over m;f—which

extracts a factor ~~mr—we can also immediately inte-
grate over all angles of h~, and over the azimuthal
angle of I;.The integration over 0—the angle between
K; and K—can be taken from 0~ ~, and we find

482/Cm)2 Vp)2
~(K)=2

~

—
~
I(Ro)LP(2K)1', (21)) Zi

where I(Rp) is a dimensionless number, which is, how-
ever, a function of Ro. We have

I(Rp) = 2/dp/PG(2/)]'

X 12&) +
(f2+o2)2 (f2++2+op) 12~2

1

nl'(I'+~') (I'+-'n'+~')el')
o'+ (1+v/2)'

Xln (22)a'+ (0 n/2)' ——
Here we have defined
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FIG. 3.A comparison of the observed and calculated momentum
distributions for deuterons produced from a Be target at an angle
of 45' in the laboratory system by protons arith incident energy
30 BeV. Curves 2 and 3 are the observed and the calculated
deuteron distribution (34). Curve 1 is the experimental distri-
bution of cascade protons used to calculate (34).The experimental
data are those of Fitch et al. (reference 3).

If we also multiply the deuteron numbers by the spin
factor 4, we have finally

and
G(2/) = (Vo/42/Ro')g(2//Ro), (23)

/pp(K) =
(
—

( (
—)I(Rp)L/J„(-,'K)j' (25)

) E) E~)
where Vo is the central depth of the optical potential.
Thus for a square well, for example, we have

G(2/) = (1/2/2) (sin2/ —2/ cos)/). (24)

The function I(Rp) has been evaluated numerically
for a number of diferent radii using Silliac, both for a
square well, and for a Saxon potential with surface
thickness 0.6 F. The function is plotted in Fig. 2, and
it is seen that the results for the two potential shapes
are very similar. The deuteron formation probability
is essentially the same in each case, the diR'erences
lying within the accuracy of the experimental results
with which we shall make comparisons.
All experimental results have been stated in terms of

a number of particles per unit solid angle, per unit
momentum (1 BeV/c) per circulating proton. Let these
distributions be designated n~ and nq for protons and
deuterons, respectively. Then if q be the eSciency of
the target, we have

I„(k)=2/kpP (k),

ppp(K) =IJZ'pp(K).

where I(2=m Vp/)22 and where A is a wave number corre-
sponding to 1 BeV/c. The value of the efficiency for
the Brookhaven experiments' is thought to be approxi-
mately —,', i.e., q

4. RELATIVISTIC CORRECTIONS

A relativistic calculation is simplified enormously by
the fact that contributions to our matrix elements arise
only from small relative momenta (internal deuteron
momenta). Thus it is only the c.m. motion of the two
nucleons which must be treated relativistically. Only
one time t need be considered, which we still measure
in the laboratory system—i.e., in the frame of reference
in which the optical potential is at rest. All relativistic
corrections then appear in terms of the factor F, with
P—(1 V2/c2) —i/2~(1 v 2/cp) —1/~(] v 2/cp) —i/2 (26)

where V is the c.m. velocity of the two nucleons (almost
unchanged by the deuteron formation), and vi and vp
are the & initial velocities of the two nucleons,
respectively.

S. T. BUTLER AND C. A. PEARSON

in which the center of mass is at rest. Thus
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in place of (9).
C' 2s1'/p (30)

(3) Matrix Elements

Each matrix element of the form

X(r)-Ce-'"/r'
C exp( —yLx +y +1"s'1'~}

SR+ys+P2z2} 1/2

where (x,y,s) are the Cartesian components of r, and
s is the direction of motion of the center of mass. The
requirement that x be normalized to unity in the
laboratory system thus yields

:8
"0Q

IO
I 1

I.O 2.0
MOMEN TUM BeV/c

3.0

Fro. 4. As in Fig. 3, the deuterons are produced from a Be target
at an angle of 30' in the laboratory system by protons with
incident energy 30 BeV. The curves are labeled as in Fig. 3, and
the experimental results are those of Schwarzschild and Zupankik
{reference 6).

M'= dr exp(iX r)r/(r)x(r)

now has m(r) and x(r) simply expressed in terms of r'.
By changing the variable of integration form r to r' we
have

1
M =— dr' exp(iX' r')s(r')X(r'),r

where X' is related to X by orentz transformation.
Thus by the evaluation as carried out previously, we
have

(1) Energy Denominators

Consider, for example, the energy denominator (10)
relating to the matrix element $P,/"'l~. This has the
relativistic form

g —gy = (Pl&I/y~~c2+ r//2c4) &/I+ (f/2II Pc&+M2c4) &/&
—O('E' 'c+M~ c)' /,2(27)

where M* is the deuteron mass, and m the nucleon mass.
Ke recall that h~'=K—k2. %e know that contri-

butions arise from lr2~$K, and can, therefore, expand
the terms of (2'7) around lt2 yK, and——also in terms of
the binding energy ~ of the deuteron. VVe 6nd

E; Ez c'[ft'—(-,'E)——'c'+ra'c'] '/'-
x P &(gK—14)'+m.j

= (1/1') (@'/~)L(kK—1.)'+~'j. (2g)

This is the same as the nonrelativistic result (10),
apart from the factor 1/I". The same is true for the other
energy denominators.

COX
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e. lo
41
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CL

IO
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3/I= —(1/F)4n C///'/m,
I I I I I I—

(31)

(2) Internal Deuteron Coordinates
The deuteron wave function x now assumes its

simple spherically symmetrical form only in terms of
the relative coordinate, say r', in the frame of reference

I 1 I

.2 .4 .6 .8 I.O I.2 t.4
MOME k TUM 8eV/ c

Fxo. 5. As in Fig. 3, the deuterons are produced from a Be
target at an angle of 90' in the laboratory system by protons
with incident energy 30 BeV. The curves are labeled as in Fig. 3,and the experimental data are those of Fitch et al. {reference 3).
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fragment, the value of p„ for calculating the ab-
solute cross sections, energy spectra, and angu-
lar distributions. The P, values are remarkably
uniform, even though absorbed into this parame-
ter are the many factors, including correlations,
not explicitly accounted for in this very simple
model.
In conclusion, we have found strong evidence

for final-state interactions in the production of
high-energy fragments (30 to 120 MeV/nucleon)
in relativistic heavy-ion-induced reactions. This
result could suggest that future work concerning
the possible detection of density effects in these
collisions should concentrate on the nucleon and
meson spectra since the energy spectra of the
composite particles can be obtained from Eq. (2)
and are shifted in energy and angle relative to
those of the nucleons. On the other hand, we
have data, showing that the particle multiplicity
increases with the size of the fragment. Thus the
observation of the larger composite particles
might be a way of selecting central collisions and
may be a sensitive probe of density effects. We
do not, however, have an understanding of the de-
tailed mechanism leading to coalescence. Equa-
tion (2) leads to a different fragment energy de-
pendence from that found in the original work of
Butler and Pearson. ' Further theoretical work
is needed to understand the difference between

20 60 20 60 20 60 106 20 60 100
EI~b (MeV/nucl. )

FIG. 3. Experimental points and calculated lines for
the double-differential cross sections of fragments
from the irradiation of uranium by Ne ions at 250
and 400 MeV/nucleon.

the two models. Earlier experimental results of
Crawford et al.' on high-energy boron to oxygen
fragments are also consistent with this model.
The high-energy tails in tQe energy spectra of
helium to beryllium fragments from uranium ir-
radiated by 5-GeV protons' can now be under-
stood by this mechanism with a reasonable value
of P, of about 140 MeV/c. This eliminates the
previously postulated apparent temperatures of
20 MeV needed to explain these tails. This mod-
el could also aid in the understanding of the scal-
ing effect seen in the production of d, t, 'He, and
He by high-energy pions and protons. '
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Coalescence production of light nuclei at Bevalac
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(1963)
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Coalescence model as an impulse approximation

Wave functions for 
initial |i>=|1,2>
and final |f>=|3>
states 

Probability for particle 1 of momentum k1 and particle 2 of 
 momentum k2 to coalescence to cluster 3 with momentum K

Wigner functions

Probability for 1+2 -> 3   P = |hf |ii|2

dN

d3K
= g

Z
d3x1d

3k1d
3x2d

3k2W1(x1,k1)W2(x2,k2)

⇥W (y,k)�(3)(K� k1 � k2), y = x1 � x2, k =
k1 � k2

2
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W (y,k) =
Z

d3x0
1d

3k0
1

(2⇡)3
d3x0

2d
3k0

2

(2⇡)3
W1(x0

1,k
0
1)W2(x0

2,k
0
2)W (y0,k0)

For a system of particles 1 and 2 with phase-space distributions fi(xi,ki) 
normalized to                                      , the number of particle 3 produced 
from coalescence of N1 of particle 1 and N2 of particle 2

Statistical factor for two particles of spin 
  J1 and J2 to form a particle of spin J  g = 2J+1

(2J1+1)(2J2+1)

The above formula can be straightforwardly generalized to multi-
particle coalescence, but is usually used by taking particle Wigner 
functions as delta functions in space and momentum. 

Wigner function Wi(xi’,ki’) centers around xi and ki 

Z
d3xid

3kifi(xi,ki) = Ni

dN

d3K
⇡ g

Z
d3x1d

3k1d
3x2d

3k2f1(x1,k1)f2(x2,k2)

⇥ W (y,k)�(3)(K� k1 � k2)
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Gyulassy, Frankel, and Remler, NPA 402, 596 (1983): Generalized 
coalescence model using nucleon Wigner functions that are delta 
 functions in space and momentum, i.e., evaluating

 with

     

 It is later called by Kahana et al. the standard Wigner calculation in
 contrast to the general one which they called the quantum Wigner 
 calculation.

W (y,k) =
Z
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3x2d
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⇥ W (y,k)�(3)(K� k1 � k2)
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FIG. 6. Central transverse mass spectra: ARC simulations are compared to E802 experiments. The proton data and theory are displayed
in nine rapidity bins beginning at y lab50.5 and of width Dy50.2; the deuteron data and theory appear in six such bins ending at
y lab51.5. The spectra in successive bins are reduced by factors of 10. Dynamical coalescence determines the wave packet size for the
coalescing nucleon pair, in this case after propagating their interacting comovers up to the pair light cone. There are then no free parameters
in the theory, the deuteron relative wave function being characterized by the experimentally determined point size. There is little variation
in these results with the deuteron size, at least, near the value 1.91 fm used here. Using a different prescription for the propagation point, for
example, some ‘‘average’’ time in the past, also has very little effect. Centrality is fixed using the E802 specified TMA cut. Little sensitivity
to this cut is evident here. We note the proton spectra in this figure and hereafter are automatically corrected for deuteron formation; i.e.,
coalescing protons ~and neutrons! are removed from the cascade. Since the proton spectra enter essentially quadratically in deuteron
formation, the theory is to be judged also by the matching to singles, a remark which applies to all further results.

FIG. 7. Peripheral transverse mass spectra from ARC dynamical coalescence under the same circumstances as in Fig. 6. There are fewer
deuteron rapidity bins. Peripherality is defined using the E802 prescription; there is greater sensitivity to this trigger than for central
collisions. The proton spectra give some indication of the accord between the theoretical and experimental definitions of the trigger.

54 345MODELING CLUSTER PRODUCTION AT THE BNL . . .
Kahana et al., PRC 54, 388 (1996)
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Coalescence production of light nuclei at AGS
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IEBE-VISHNU hybrid model with AMPT initial conditions

Elliptic flow of deuteron measured by ALICE  is also satisfactorily described.  



Coalescence vs statistical production of deuteron

19
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With Np protons and Nn neutrons of temperature T uniformly distributed in
V , the deuteron number in coalescence model with Gaussian Wigner function
of width parameter � for deuteron is

N coal
d =

3

21/2

✓
2⇡

mT

◆3/2 1
�
1 + 1

mT�2

�3/2
NpNn

V

while that in the thermal model is

N thermal
d =

3

21/2

✓
2⇡

mT

◆3/2 NpNn

V
eBd/T ,

where Bd is deuteron binding energy. So

N coal
d = N thermal

d if T >> Bd and mT >> 1/�2,

i.e., temperature of nucleons is much larger than deuteron binding energy and
nucleon thermal wavelength is much smaller than deuteron size.
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Deuteron production from an extended ART model 

§ Include deuteron production 
   (n+p → d+π) and annihilation 
   (d+π → n+p) as well as its 
   elastic scattering      
§ Similar emission time 
   distributions for protons 
   and deuterons in 
   coalescence model
§ Slightly different deuteron 
   emission time distribution in 
   transport and coalescence 
   models  
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Oh & Ko, PRC 76, 054910 (2007); Oh, Lin & Ko, PRC 80, 064902 (2009)
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Time evolution of proton and deuteron numbers

§ Both proton and deuteron numbers decrease only slightly 
   with time → early chemical equilibration
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Deuteron production in kinetic theory Cho & Lee, PRC 97, 024911 
(2018)
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§ Using

𝜎 𝑑𝜋) → 𝑝𝑝 = 50	mb
      to take into account the   
      large cross section due to 
𝑑𝜋) → 𝑝𝑛𝜋)

§ Time evolution of 
temperature and volume 
from a schematic hydro 
model.

§ Final abundance    
     independent of initial   
     abundance.
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Nucleosynthesis in HIC via the Saha equation
Vovchenko, Gallmeister, Schaffner-Bielich & Greiner, PLB 800, 135131 (2020)

§ Light nuclei are in chemical equilibrium: 𝜇* = ∑+ 𝜇*!
→

§ Thermal model:
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Deuteron production in SMASH Oliinychekov, Pang, Elfner & Koch, 
PRC 99, 044907 (2019)  

§ Using a large 
     𝜋𝑁𝑁 ↔ 𝜋𝑑 cross
     section of about
     100 mb.

§ Deuteron number
     essentially remains 
     unchanged during 
     hadronic evolution  
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Light nuclei production from non-local many-body scattering
Sun, Wang, Ko, Ma & Shen, arXiv:2106.12742 [nucl-th]
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Sun et al., arXiv:2207.12532 [nucl-th]

§ d/p and t/p ratios are similar in kinetic approach and coalescence model.  
§ Hadronic re-scatterings reduce the triton yields by about a factor of 2 as a 
   result of constant ⁄𝑡𝑝 𝑑$ = ⁄1 2 3	and decreasing	 ⁄𝑑 𝑝	due to decay of    
   baryon resonances as the hadronic matter expands and cools.   26

Hadronic rescattering effects on light nuclei production
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Binding energies of light nuclei in hot nuclear matter
Typel, Roepke, Klahn, Blaschke & Wolter, PRC 81, 015803 (2010)

§ Microscopic quantum
     statistical approach 
     with relativistic 
     mean-field model.

§ Mott effect due to 
    Pauli blocking can 
    lead to bound light 
    nuclei in denser nuclear 
    matter as temperature 
    increases.
§ Are light nuclei 
     bounded in hot pion
     gas?



§ Overlap of momentum distribution of    
constituent nucleons in nucleus A 
with that of nucleons in nuclear 
medium

§ The cut 𝑓%&$'() = 0.11, 𝑓%&*'() = 0.16,   
and 𝑓%&+'() = 0.25 reasonably     
reproduce the FOPI data in a wide 
range of 𝐸,-./ .
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Light nuclei production in intermediate-energy HIC
Rui Wang et al., 2305.02988 [nucl-th]



Summary 

§ Light nuclei production may probe EoS and phase diagram of QCD matter.

§ Nucleon density fluctuations enhance the production of light nuclei,
     providing a possible explanation for the experimental observations at SPS    
     and RHIC. 

§ Coalescence model gives similar light nuclei yields in HIC as the thermal 
model if their binding energies are small compared to the temperature of 
the hadronic matter and the nucleon thermal wavelength is much smaller 
than their sizes.  Both results are similar to that from transport model 
studies in which deuterons are assumed to remain bounded and can be 
produced and dissociated.

§ Kinetic approach with light nuclei finite size effect can naturally explain the 
suppressed production of light nuclei in collisions of small systems. 

§ Light nuclei produced in intermediate-energy HIC can probe their in-
medium properties.
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