Slow RI beam production using an RF gas catcher and precision mass spectroscopy using MRTOF-MS

Aiko Takamine (Nuclear spectroscopy lab., RIKEN)

> August 8th, 2023, 3rd NUSYS-2023 Fudan university, Shanghai

Slow RI beam production using an RF gas catcher and precision mass spectroscopy using MRTOF-MS

Aiko Takamine (Nuclear spectroscopy lab., RIKEN)

+

August 8th, 2023, 3rd NUSYS-2023 Fudan university, Shanghai

SLOWRI collaboration

Nuclear spectroscopy lab.

Contents

- Very basics of RF traps (Paul trap)
- How to convert high energy RI beams to ultra-slow RI beams?
- How to precisely measure masses of exotic nuclei?

To trap ions...

requirement: 3 dimensional forces to the center

$$\overrightarrow{F} = -\nabla\phi$$
 ϕ : potential

convenience: harmonic force

 $\overrightarrow{F} \propto x, y, z$

$$\rightarrow \phi = a_x x^2 + a_y y^2 + a_z z^2$$

Laplace equation $\Delta \phi = 0$

$$\Rightarrow a_x + a_v + a_z = 0$$

Could be saddle shaped. However, 3-D trapping is impossible with static fields. "Earnshaw's theorem"

Add a magnetic field \Rightarrow Penning trap Add oscillating fields \Rightarrow **Paul trap**

 $c_x + c_y = 0, c_z = 0,$

 $\tilde{c}_x + \tilde{c}_y = 0, \tilde{c}_z = 0$

$$\phi(x, y, z, t) = (c_x x^2 + c_y y^2 + c_z z^2) + \cos(\omega t)(\tilde{c}_x x^2 + \tilde{c}_y y^2 + \tilde{c}_z z^2)$$

oscillating fields

again,

 $c_x + c_y + c_z = 0$, $\tilde{c}_x + \tilde{c}_y + \tilde{c}_z = 0$

geometric constraints

 $c_{y} = 0, c_{z} = 0$ $\phi = (U - V \cos \omega t) \frac{x^{2} - y^{2}}{2r_{0}^{2}}$

Ion trap (Paul trap)

$\frac{\text{case I}}{c_x + c_y = 0, c_z = 0,}$ $\tilde{c_x} + \tilde{c_y} = 0, \tilde{c_z} = 0$ $\phi = (U - V\cos\omega t) \frac{x^2 - y^2}{2r_0^2}$

hyperbolic surface

Solution for stable conditions:

$$x, y(t) = A \sum_{n=0}^{\infty} c_{2n} \cos(\beta + 2n) \frac{\omega t}{2}$$

 c_{2n},β are complex functions of a,q

Approximate solution for $a, q \ll 1$

$$x, y(t) = A[1 + (q/2)\cos \Omega t]\cos \omega t$$

Particle's equations of motion

$$\ddot{x} + \frac{Q}{mr_0^2} (U - V\cos\omega t)x = 0 \qquad \qquad Q: \text{ charge}$$

$$\ddot{y} + \frac{Q}{mr_0^2}(U - V\cos\omega t)y = 0$$

 $\vec{z} = 0 \quad \leftarrow$ we apply an additional DC field in z direction for axial confinement

If we use the substitutions
$$a = \frac{4QU}{mr_0^2\omega^2}, q = \frac{2QV}{mr_0^2\omega^2}$$

$$\frac{d^2x}{d\xi^2} + (a - 2q\cos(2\xi))x = 0$$

"Mathieu's equation"

Harmonic oscillation at Ω (secular motion) modulated by an oscillation at ω (micromotion)

As for the details of Mathieu's equation...

N. W. McLachlan

Theory and Application of Mathieu Functions

4.7 ***** 3

Û

PTEP

Prog. Theor. Exp. Phys. **2020**, 043A01 (14 pages) DOI: 10.1093/ptep/ptaa024

Exact solutions of Mathieu's equation

Derek J. Daniel

School of Mathematics, Physics and Technology, University of The Bahamas-North, PO Box F-42766, Grand Bahama, The Bahamas *E-mail: ddaniel.anu@gmail.com

Received November 20, 2019; Revised February 4, 2020; Accepted February 11, 2020; Published April 22, 2020

Mathieu's equation originally emerged while studying vibrations on an elliptical drumhead, so naturally, being a linear second-order ordinary differential equation with a Cosine periodic potential, it has many useful applications in theoretical and experimental physics. Unfortunately, there exists no closed-form analytic solution of Mathieu's equation, so that future studies and applications of this equation, as evidenced in the literature, are inevitably fraught by numerical approximation schemes and nonlinear analysis of so-called stability charts. The present research work, therefore, avoids such analyses by making exceptional use of Laurent series expansions and four-term recurrence relations. Unexpectedly, this approach has uncovered two linearly independent solutions to Mathieu's equation, each of which is in closed form. An exact and general analytic solution to Mathieu's equation, then, follows in the usual way of an appropriate linear combination of the two linearly independent solutions.

.....

Subject Index A02, A10, A13, A61, A64

Currently unavailable

Linar Paul trap

"ideal" case: $d_0/2 = 1.1468r_0$ Reuben et al.,IJMS **154**, 43-59 (1996)

Not ideal but a circular surface (just a rod) is practically ok.

In a dense gas

E potential:
$$\phi = (V \cos \omega t) \frac{x^2 - y^2}{2r_0^2}$$

E field: $\vec{E}(\vec{r}, t) = -\nabla \phi = \frac{V}{r_0^2} {\binom{-x}{y}} \cos \omega t$

Divide the motion into mean and micro motions

$$\vec{r} = \tilde{r}(t) - \vec{\rho}(t) = \tilde{r}(t) - \frac{Q}{m\omega} \frac{\vec{E}(\vec{r})}{\sqrt{\omega^2 + D^2}} \cos(\omega t + \beta) \quad \tan \beta = D \quad D: \text{ damping constant} \\ \vec{F}_{damp} = -mD\vec{v}$$
Then, time-averaged force over one period,

$$\vec{\tilde{E}}(\vec{\tilde{r}}) = Q\langle \vec{E}(\vec{\tilde{r}})\cos\omega t + \vec{\rho}(t)\nabla\cdot\vec{E}(\vec{\tilde{r}})\cos\omega t \rangle = -\nabla\vec{E}^2(\vec{\tilde{r}})\frac{Q^2}{4m}\frac{1}{\omega^2 + D^2}$$

So, time-averaged pseudo-potential is

$$U(\vec{\tilde{r}}) = \frac{Q^2}{4m} \frac{1}{\omega^2 + D^2} \vec{E}^2(\vec{\tilde{r}}) = \frac{Q^2 V^2}{4m(\omega^2 + D^2)r_0^2} \left(\frac{r}{r_0}\right)^2$$

This can be extended to 2n poles pseudo-potential.

$$U(r) = \frac{Q^2 n^2 V^2}{4m(\omega^2 + D^2)r_0^2} \left(\frac{r}{r_0}\right)^{2n-2}$$

What will happen with this configuration?

Figure 2.9. Cross sectional view of a multipole RF trap. A coordinate transformation from r to y is shown.

What will happen with this configuration?

Let's think of 2*n* pole traps
Use:
$$r = r_0 - y$$
 and $a = \frac{\pi r_0}{n}$ *a*: 'pitch' of electrodes

When $n \to \infty$, the electrodes can be considered to be aligned flat

$$U_{\text{eff}}(y) = \frac{\pi^2 Q^2 V^2}{4m(\omega^2 + D^2)a^2} \lim_{n \to \infty} \left(1 - \frac{\pi y}{na}\right)^{2n-2}$$

$$\frac{\pi^2 Q^2 V^2}{4m(\omega^2 + D^2)a^2} \exp\left(-\frac{2\pi}{a}y\right)$$

Let's impose a static electric field E_0 to push ions

$$U_{\rm eff}(y) = = \frac{\pi^2 Q^2 V^2}{4m(\omega^2 + D^2)a^2} \exp\left(-\frac{2\pi}{a}y\right) + QE_0 y$$

Ions will be trapped just a bit above the electrodes

Figure 2.10. (a) Schematic of the cross-sectional view of a radiofrequency (RF)

Contents

- Very basics of RF traps (Paul trap)
- How to convert high energy RI beams to ultra-slow RI beams?
- How to precisely measure masses of exotic nuclei?

Production of RI beams

Slow RI beams with a high quality Chemical property dependence

In-flight type heavy ion beams + thin target (Be, C etc.)

No chemistry dependence High energy RI beams (with a large energy spread)

In-flight method yields

Beam energy: (230-) 345 *A* MeV **In-flight fission**: ²³⁸U + Be target **Fragmentation**:

¹²⁴Xe, ⁷⁸Kr, ⁷⁰Zn, ⁴⁸Ca, ¹⁸O +Be target

RI beams produced from May 2007 to 2023 @ BigRIPS

A large variety of radioactive ion beams at ~ 300 A MeV

updated by Shimizu-san (BigRIPS team) from Y. Shimizu et al., NIM B **463**, 158 (2020)

https://ribeam.riken.jp/welcome.php

High energy RI beams are ...

- 1. Stopped in He (~0.1 bar)
- 2. Settled down to charged states (1+, 2+, 3+)

because the 1st ionization potential of helium is higher than any other elements

		Ionizati	Ionization Potentials [eV]			
		1st	2nd	3rd	4th	5th
1	н	13.59844				
2	He	24.58738	54.51776			
3	Li	5.39171	75.64009	122.4544		
4	Be	9.32269	18.21115	153.8962	217.71858	
5	в	8.29803	25.15484	37.93064	259.37521	340.2258
6	С	11.2603	24.38332	47.8878	64.4939	392.087
7	N	14.53414	29.6013	47.44924	77.4735	97.8902
8	0	13.61806	35.1173	54.9355	77.41353	113.899
9	F	17.42282	34.97082	62.7084	87.1398	114.2428

➡ RI ions can be manipulated by electric fields.

: Any cathode is the terminal point of all electric field lines.

High energy RI beams are ...

- 1. Stopped in He (~0.1 bar)
- 2. Settled down to charged states

We use a magical cathode electrode called "RF carpet"!

M. Wada

challenging for higher gas pressure

Alternative technique ~ion surfing~

Traveling wave produced by AF & RF fields.

If you lock ions to the traveling wave, you can very quickly transport and extract ions.

> S. Masuda *et al.,* Elect. Eng. Jpn. **92,** 43 (1972). G. Bollen, IJMS **299**, 131 (2011)

New configuration gas catcher

Quick transport over a long distance

New configuration gas catcher

Micro-segmented quadrupole ion beam guide (µs-qpig)

manufactured with Rogers 4350B

ZD MRTOF-MS: RFGC + MRTOF-MS behind ZD spectrometer

Contents

- Very basics of RF traps (Paul trap)
- How to convert high energy RI beams to ultra-slow RI beams?
- How to precisely measure masses of exotic nuclei?

Atomic masses

- binding energy

 $BE(N,Z) = (Nm_n + Zm_p + Zm_e - m(N,Z)) \cdot c^2$

 $\langle \Rightarrow \rangle$

- Binding energy \rightarrow sum of all interactions
- We can learn about the inner forces through the mass

Masses for nuclear structure

Two-nucleon separation energies

$$S_{2n}(Z,N) = m(Z,N-2) - m(Z,N) + 2m_n$$

Empirical shell gaps

$$\delta_{2n}(Z,N) = S_{2n}(Z,N) - S_{2n}(Z,N+2)$$

Nuclear structure by finite difference formulae

Masses for nuclear structure

2n separation energy is increased by

- closed shell or
- nuclear deformation (shape transition)

Z=37- 41: kink at N~60 Z=36: smooth trend

"nuclear quantum phase transition"

Masses for astrophysics

Masses for astrophysics

The magicity of neutron-rich nuclei largely affects r-process abundance

Masses for astrophysics

Isochronous mass spectrometry with storage rings:

•Good mass precision reached: δ m/m ≈ 10⁻⁵ - <10⁻⁶

•Short half-lives can be addressed

 \rightarrow time limit < 1ms

- •Challenge:
- Momentum acceptance
- Mass accuracy, mass references, isomer mixtures
- Expensive costs

CSRe with new results: $\Delta m/m \approx 2x10^{-7}$

M. Zhang et al., https://doi.org/10.48550/arXiv.2209.05701

Penning trap mass spectrometry

R. N. Wolf *et al.*, NIM A **686**, 82 (2012)

Time-of-flight ion-cyclotron-resonance method (TOF-ICR)

- •Very high precision: δ m/m < 10⁻⁸
- •Challenge:
- -Relatively slow (t_{exc} = 200-1000ms)
 -Needs careful ion preparation
 -Low energy only

Phase imaging ion-cyclotron-resonance method (PI-ICR)

- Break-through precision: δm/m < 10⁻⁹
 Much faster method to gain precision
 Challenge:
- -Needs careful ion preparation
- -Low energy only

Electrostatic time-of-flight mass spectrometry

(e)

Mass resolving power:

- linear TOF-MS: $m/\Delta m > 100$
- reflector-TOF-MS: $m/\Delta m > 5,000$
- MRTOF-MS: m/Δm > 100,000
- $\Delta m = 2\Delta t = FWHM$ of ion TOF distribution

- (a) Linear TOF-MS (b) Reflector-TOF-MS
- (c) Multiple-Reflection TOF-MS (closed Path)

(d) Multiple-Turn TOF-MS (closed path)

- Multiple-Reflection (f) Multiple-TOF-MS (open Path) TOF-MS
 - (f) Multiple-Turn TOF-MS (open path)

W.R. Plass et al., IJMS 349-350, 134 (2013)

The multi-reflection time-of-flight (MRTOF) technique

Ion focusing

•Axial potential shape allows to modify the phase space of the ions via the penetration depth into the ion mirror

- •Narrow time-of-flight focus achieved at the detector
- → high resolution by long flight path and focusing

MRTOF mass spectrograph

M. Rosenbusch et al., Nucl. Instr. Meth B 463, 184 (2020)

axial position

Symbiotic experiments with HiCARI campaign (2020)

"ZD-MRTOF"

RF ion guide gas catcher + MRTOF

SRC

8RIPS

primary beam: Zn 345 MeV/u, 600pnA : U 345 MeV/u, 60pnA 1st target: Be 10, 11mm 2nd target: Be, C, Au, Pb, Bi

in-beam γ-ray spectroscopy HiCARI campaign

Reaction	Spokesperson
Knock-out for ^{81,82} Zn, ⁸³ Ge	F. Flavigny
Coulex of ^{86,88,90} Se, ^{84,86} Ge	F. Browne
Knock-out for ¹¹⁰ Zr, ¹¹² Mo	W. Korten
Knock-out for ¹²⁹ Ag	Z. Podolyak
Coulex of ¹³⁶ Te	A. Jungclaus
Coulex of 56,58Ti	T. Koiwai
p-Knock-out from ^{38,48,54} Ca	H. Crawford

Symbiotic experiment results with HiCARI campaign

Ti-58, V-58 molecular ions

 literature values with this work S. limura et al, PRL 130, 012501 (2023) (a) counts / 2ns 70 E 58TiOH+ 10 $S_{2n}[MeV]$ 60 50 counts FWHM = 9.2 ns5 58VOH+ 40 58CrOH+ 0 30 E -20 20 40 -40 20 C₂FO₂+ 59VO+ 10Ē 5 21 • $m_{\text{exp.}}(N-2) - m_{\text{exp.}}(N) + 2m_n$ 0 معطوية فبالجد وسيال وكالكري والمحالي وجار الملحج ويترونه والحريجين جزين وتباور الماكيجين إنجابه التحرير أت $m_{\text{exp.}}(N-2) - m_{\text{lit.}}(N) + 2m_n$ $m_{\text{lit.}}(N-2) - m_{\text{exp.}}(N) + 2m_n$ 200 -2000 -1500 -1000 -500 500 1000 1500 2000 TOF - 15,052,352 ns [ns] 32 34 36 30 38 40 Ti Ca Neutron number 1f5/2 3 -O- literature values - with this work lost attraction (34) 2 **2p**1/2 N = 34**2p**1/2 1 1f5/2 (32) $\Delta_{2n}[MeV]$ **2**<u>p</u>_{3/2} **2p**_{3/2} strongly attractive 1f7/2 N = 321f7/2 р n n р 5 = 28Ν

4

3

18Ar

 $\begin{array}{l} m_{\rm lit.}(N-2) - 2m_{\rm exp.}(N) + m_{\rm lit.}(N+2) \\ m_{\rm lit.}(N-2) - 2m_{\rm lit.}(N) + m_{\rm exp.}(N+2) \end{array}$

 $m_{\rm lit.}(N-2) - 2m_{\rm exp.}(N) + m_{\rm exp.}(N+2)$

19K 20Ca 21Sc 22Ti 23V

Proton number

24Cr 25Mn 26Fe

- no proton in $f_{7/2}$ orbit for Ca → weaker tensor force
- → shell gap

- The typical transport time in the gas catcher is currently >50 ms. We will improve it by modification of the inner structure.
- We also have even another parasitic measurement plan behind the gas cell. *What kinda?*
- We continue the precision mass measurements of exotic nuclei using ZD-MRTOF setup. *Which ones?*
- We also plan to use the slow RI beams for other projects besides MRTOF.
 Which one?

- The typical transport time in the gas catcher is currently >50 ms. We will improve it by modification of the inner structure.
- We also have even another parasitic measurement plan behind the gas cell.
 What kinda?
- We continue the precision mass measurements of exotic nuclei using ZD-MRTOF setup.
 Which ones?
- We also plan to use the slow RI beams for other projects besides MRTOF.
 Which one?

If you wanna know them, please join us! 😈