Clustering approach for waveform MC

Shuiting Xin, Guang Zhao, Linghui Wu, Mingyi Dong <u>xinshuiting@ihep.ac.cn</u> 09/March/2023

Introduction

Cluster counting algorithm:

- \bigcirc
- \bigcirc The time resolution maybe ~2 ns.
- The single electron diffusion is found to be $2 \sim 4$ ns, if drift distance is 1.8 mm ~ 4 mm. \bigcirc
- \bigcirc

The second step of peak finding is to group electron peak into clusters $N_{\text{peaks}} \rightarrow N_{\text{clusters}}$

For derivatives, currently the peaks after electronic raise time and sampling smooth are treated as clusters.

Clustering strategy: group electron peaks by a time cut, where the cut depends on the drift time.

Peak finding with 2th derivative in MC

- Our MC :
 - fast simulation based on some electronic assumption, sampling rate = 1.2 GHz, time constant = 2ns
 - Track impact parameter = 4 mm, 1cm cell, 5000 events.
- Peak finding: 2td derivative method.
 - choose a threshold without much fake peaks
 - Cut off t< 50 and t > 541 events

Performance: Npeaks with different threshold

MC Time difference

Time difference: the time between consecutive peaks $\sim 80 \sim 100$ ns region is highly occupied. (assuming v = 2.5 cm/ μ s) Important filled the time difference distribution at the peak time. First line: Truth; Second line: reconstruction.

Time difference fit

counting algorithm based on first and second derivatives

gives us a timing cut.

If the combined fit (f1 + f2) is different to individual fit (truth primary and secondary Δ_t), but agreed within same magnitude. Mot a pure exponential shape, might due to magnetic field, drifting .etc affect.

If Fitted the Δ_t to $f = f1 + f2 = Ae^{-\tau_1/t} + Be^{-\tau_2/t}$ function. (An idea which was presented by Cuna in her previous talk: <u>Cluster</u>

 $^{\oplus}$ Two components means the exponential function of Cluster's/ electron's delta time. Normalized f1 + f2 to 1. The intersection point

Timing cut estimated from MC truth

- 5 intersection points from several time regions using truth.
- (200ns ~ 5 ns)

Timing cut determination: fit with a 2nd poly function. The value seems to be small than single electron diffusion

Clustering strategy

Loop all electron peaks, if the distance of two consecutive peaks is small than the timing cut, merged as a cluster. A cluster
is allowed to have a length within 1 timing cut unit.

Dark red: clusters; blue stick: electrons

Assuming T[ele1,ele2] = T[ele2,ele3] = timing cut,

the second electron is grouped to the first electron as one cluster (Cls1),

the third electron will not not be merged to Cls1 as T[ele3,ele1] > timing cut, but merged to Cls2 if the 4th electron has T[ele4,ele3] < timing cut.

Clustering performance

- than the truth one.
- Clustering efficiency (Mean) = 17.18 / 20.9 = 82.2 %

Summary

- The clustering is needed after the peak finding with derivatives
- 41//p)+
- If the timing cut is varied from 2 ns to 5 ns, with drift time from 100 ns to 500 ns.
- The cluster coating efficiency is 82.2 % with 19.2 % resolution with 1cm track.
- Plan: Try to apply clustering on test beam data.

Encoded a clustering method for MC waveform, employing the time differences idea from Federica Cuna's talk.

Backup

Threshold = 0.0016

\oplus 1000 events threshold = 0.00205

12