
味物理与CP破坏研讨会

How to start one analysis on
Belle II

Speaker: Junhao Yin

DataStore
• A dst contains objects which will populate a DataStore.

• data summary table

• Basically: a special ROOT file.

• The data for physics analysis are "mdst”

• mini data summary table.

• Same structure of a dst, but with much less information

• Input to your analysis package scripts

• The calibration & performance are “cdst”

• calibration data summary table.

• mdst + digits

• At the end of your analysis chain you will write out a “normal" root file containing a TTree, TNtuple, or histograms

A relevant question
https://questions.belle2.org/question/219
Objects allowed in an mdst:
https://goo.gl/AB15Ud

What is “basf2”

belle 2 analysis software framework

Easy to read and use!

First step—Set the environment
After login kekcc:

 $ source /cvmfs/belle.cern.ch/tools/b2setup release-XX-YY-ZZ / light-XX-YYYY

Always use the latest release/light version, for example: release-06-00-14 / light-2212-foldex

If you are not sure about the latest version, use:

 $ b2setup --help

to check the available releases, or use

 $ b2help-releases

to check the recommended release

*release:

>A full package, including everything: analysis, pxd, svd, trg, etc…

*light:

>A light release, only a few packages: analysis, mdst, skim, b2bii, etc…

>Suitable for analysis!

https://questions.belle2.org/question/12726/new-naming-scheme-for-light-releases/

basf2 --info
release version

local release location
will show if local work

externals:
/cvmfs/belle.cern.ch/sl7/externals/

python version

ROOT version

Data processing

Data processing

Data processing

Looking for more details?
questions https://questions.belle2.org
for anything, not just analysis

documentation https://software.belle2.org
there is fairly good documentation

examples $BELLE2_RELEASE_DIR/<packagename>/examples
for today <packagename> = analysis

the code https://stash.desy.de/projects/B2/repos/basf2/browse
 $BELLE2_RELEASE_DIR/

https://stash.desy.de/projects/B2/repos/basf2/browse

A simple example of MC production

1. Create your own path

2. Call a function to load a module and add it to your path.

3.Call other modules, i.e. generator, simulation, reconstruction, output

4. Process the path

Produce 100 events

generate inclusive c-cbar events, each one should contain a D*±

Header

create your own path

Process the path

Geant4 simulation. TRG simulation also included.

A simple example of MC production

Need release, not light!

FAQ about MC production

Q: Where is the beam energy setting?
A: Automatically set to with a reasonable beam spread.

Q: What if I want to use custom beam energy?
A: You can use `beamparameters.add_beamparameters()`

Q: Include the beam background?
A: Use the option: “add_simulation(main, bkgfiles=bg)”

Please Note:
It’s not recommended to generate the MC sample by yourself.
You cannot use custom MC in your final result.
Reason: 1. It’s not trivial to set the correct GT totally by oneself.
 2. The signal MC samples may already been produced by other people.
 3. MC samples are usually huge. It’s waste of storage if all MC are stored on kekcc.

Ask conveners/DP liaisons to check if your MC are produced or not.

You can always ask conveners/DP liaisons to produce the signal MC samples.

Υ(4S)

DataStore

DataStore
• Can I read the mdst with my own, custom made scripts and run the analysis?

DataStore
• Can I read the mdst with my own, custom made scripts and run the analysis?

NO!

DataStore
• Can I read the mdst with my own, custom made scripts and run the analysis?

NO!
• The mdst contains also the relations bewteen the

objects stored in it, which are not trivially handeled by
a standalone root macro.

• Use always basf2-based code.

• The relation between analysis object (particles) and
the reconstructed objects is not always trivial.

• One particle may have many trackFitResults.
• The ECLClusters are not photons.
• Use the modules provided by a detector expert

Particle-based analysis

• Take particle list.

• Build up decay parents from kids

• Make candidates

• Filter/cut/keep

• In most cases, you will have multiple candidates per event

• basf2 will restore all candidates

• We don’t need best candidate: https://arxiv.org/abs/1703.01128

Particlelist

There are two possible ways to fill a list of stable particles

1. Fill it by yourself

A simple example of MC production

There are two possible ways to fill a list of stable particles

1. Fill it by yourself

A simple example of MC production

particle:label whole name of a particle list

There are two possible ways to fill a list of stable particles

1. Fill it by yourself

2. Use standard tracks

A simple example of MC production

particle:label whole name of a particle list

Reconstruct your decay

Reconstruct your decay

***dmID is short for “decay mode ID”

You don’t have to call
reconstructDecay(‘decayString='D*-:sig -> pi-:loose anti-D0:sig’,cut='1.8<M<2.2',path=my_path)

Reconstruct your decay

***dmID is short for “decay mode ID”

More details on sphinx

https://software.belle2.org/sphinx/release-06-00-14/analysis/doc/MAWrappers.html?highlight=reconstructdecay#modularAnalysis.reconstructDecay

Do some fit
Here I choose TreeFit

Of course there are also many fitter in basf2:
•Use cases

•RAVE

•KFit

•OrcaKinFit

• TagV

https://software.belle2.org/sphinx/release-06-00-14/analysis/doc/TreeFitter.html
https://software.belle2.org/sphinx/release-06-00-14/analysis/doc/OtherVertexFitters.html#use-cases
https://software.belle2.org/sphinx/release-06-00-14/analysis/doc/OtherVertexFitters.html#rave
https://software.belle2.org/sphinx/release-06-00-14/analysis/doc/OtherVertexFitters.html#kfit
https://software.belle2.org/sphinx/release-06-00-14/analysis/doc/OtherVertexFitters.html#orcakinfit
https://software.belle2.org/sphinx/release-06-00-14/analysis/doc/OtherVertexFitters.html#tagv

Save the variables

Save the variables

To get the variable list, a simple command:

Or you can get the information on software.belle2.org :

Chapter 6.3 Variables

There are more than 100 variables…

Can use `daughter(i-th)` to obtain the variables of the i-th daughter’s.

We can also use `formula` to calculate the variables that you need.

$ b2help-variables

http://software.belle2.org
https://software.belle2.org/sphinx/release-06-00-14/analysis/doc/index-01-analysis.html#variables

Alias

For example, the decay mode ID of .

We need to call:
'extraInfo(decayModeID)'

It would be awful to use this especially in the output.root

But with alias, we can easily replace this with:
variables.addAlias('modeID', 'extraInfo(decayModeID)')

D0

Name in VariableManager is too long

Variable collections + alias
• In analysis/scripts/variables/collections.py, some variables are put together as a collection:

#: Replacement for DeltaEMbc
deltae_mbc = ["Mbc", "deltaE"]

#: Replacement to Kinematics tool
kinematics = ['px', 'py', 'pz', 'pt', 'p', ‘E’]

• And we can use `create_aliases` to together with the collections:
d0kinematics = vu.create_aliases(vc.kinematics, ‘daughter(0,{variable})','d0')

 In output.root it would be shown like: d0_px, d0_py, d0_pz, …

• Custom collection is also fine, they are just python list!
extra_vars = ['xp','chiProb']
trgs = ['ffy','hie','c4']
for trg in trgs:
 variables.addAlias(f'is_{trg}', f'L1PSNM({trg})')
 extra_vars.append(f'is_{trg}')

We can do better!

Particles, variables

Variables for a selected kid particle:

import variables.utils as vu
spi_vars = vu.create_aliases_for_selected(list_of_variables= vc.kinematics + vc.mc_truth ,
 decay_string='D*+ -> ^pi+ D0 ')

Even for grandkid particle:

pi0_vars = vu.create_aliases_for_selected(list_of_variables= vc.inv_mass + vc.kinematics + vc.mc_truth ,
 decay_string='D*+ -> pi+ [D0 -> K- pi+ ^pi0] ')

Use the ‘carat’ to specify the particle you are choosing
Order and decay chain should be same as in `reconstrucDecay`

Finally!
#ADD all variables together:
Dsp_vars = D0_vars + spi_vars + pi0_vars + vc.inv_mass + vc.kinematics + vc.mc_truth +
extra_vars

#output
ma.variablesToNtuple(decayString='D*+:sig',
 variables=Dsp_vars,
 filename=OutputFile,
 treename=OutputTree,
 path=my_path)

Process the events
b2.process(my_path)

/home/belle/yinjh/public/sFPCP/tutorial

Directly to histogram?

How to find the module I need?
• All the modules are in `<package>/modules/`.

• In most cases, you don’t need to call them directly.

• In `<package>/scripts`, there are well prepared functions to be called. Just like

the `stardardCharge`. For example: in `generators/scripts/generators.py`:

How to find the module I need?
• All the modules are in `<package>/modules/`.

• In most cases, you don’t need to call them directly.

• In `<package>/scripts`, there are well prepared functions to be called. Just like

the `stardardCharge`.

• You can also find good instruction on sphinx!

https://software.belle2.org/

How to find the module I need?
• All the modules are in `<package>/modules/`.

• In most cases, you don’t need to call them directly.

• In `<package>/scripts`, there are well prepared functions to be called. Just like

the `stardardCharge`.

• You can also find good instruction on sphinx!

• If you failed to figure it by yourself, don’t hesitate to ask on questions!

• Or our QQ/Wechat channel!

https://software.belle2.org/
http://questions.belle2.org

basf2 on the Grid

Grid

• Modern particle physics experiments (will)
collect many tens of petabytes of data ...

• … and even more tens of petabytes of MC.

• Processing all data/MC at a single site, even
a national laboratory, is not longer a
sustainable model.

• Heavily used by the LHC and other
experiments.

• The grid is a distributed computing system utilised by Belle II, and many other particle
physics experiments, to make use of the computing resources of the many universities and
institutions worldwide (that are involved inparticle physics research).

Belle II Grid

To run an analysis job with gbasf2 in the same way as you would with basf2 in a terminal.

If you run basf2:
 basf2 myAnalysisScript.py
You would like to run:
 gbasf2 myAnalysisScript.py
It is almost this simple!

You need to specify three additional options: a basf2 release, a project name, and the input
dataset.
 gbasf2 myAnalysisScript.py -s basf2-release -p myProject -i
InputDataSet/PathOfInputDataSet/CollectionOfInputDataSet
The gbasf2 code is independent of the basf2 release.

Get more details on the instruction or the confluence page.

https://gbasf2.belle2.org/index.html
https://confluence.desy.de/display/BI/Computing+GBasf2

Check the job status
After all preparations (keys, certificates, etc…), surf to

https://dirac2.cc.kek.jp:8443/DIRAC/

with the browser where your certificate installed.

https://dirac2.cc.kek.jp:8443/DIRAC/

Check the job status
After all preparations (keys, certificates, etc…), surf to

https://dirac2.cc.kek.jp:8443/DIRAC/

with the browser where your certificate installed.

https://dirac2.cc.kek.jp:8443/DIRAC/

Check the job status
After all preparations (keys, certificates, etc…), surf to

https://dirac2.cc.kek.jp:8443/DIRAC/

with the browser where your certificate installed.

Of course you can also check this on kekcc with a simple command:
gb2_job_status -j [job ID] -p [project name]

https://dirac2.cc.kek.jp:8443/DIRAC/

How to find dataset
1. Find the information on confluence,

https://confluence.desy.de/display/BI/Data+production+campaigns

How to find dataset
1. Find the information on confluence,

Or

2. Use the dataset searcher

https://confluence.desy.de/display/BI/Data+production+campaigns

How to find dataset
1. Find the information on confluence,

Or

2. Use the dataset searcher

https://confluence.desy.de/display/BI/Data+production+campaigns

How to find dataset
1. Find the information on confluence,

Or

2. Use the dataset searcher
gb2_ds_search dataset --data_type Data --campaign bucket9 --general_skim hadron --data_level mdst

If you don’t like the command…

https://confluence.desy.de/display/BI/Data+production+campaigns

skim
The skim package is a collection of high-level analysis scripts that reduce the data set to a manageable size by applying a

simple selection. The input to a skim are Belle II File Format files of processed data. The output are so-called User-defined

DST Output (udst) files. These files actually contain more information but fewer events.

Make life easier

skim ID. Will be used in dataset searcher

https://software.belle2.org/sphinx/recommended-training/mdst/doc/index.html#mdst
https://software.belle2.org/sphinx/recommended-training/analysis/doc/UdstOutput.html#analysis-udstoutput
https://software.belle2.org/sphinx/recommended-training/analysis/doc/UdstOutput.html#analysis-udstoutput

B2BII
Belle to Belle II

B2BII
Belle to Belle II

Reads Belle mdst file

B2BII
Belle to Belle II

Perform corrections to the Belle mdst data objects (“fix mdst”)
Apply HadronB(J) skim by default.

B2BII
Belle to Belle II

Performs Belle mdst to Belle II mdst conversion

B2BII
Belle to Belle II

All basf2 modules will work now!

Particle list for B2BII analysis

How to use B2BII?
• Just one line in your script:

convertBelleMdstToBelleIIMdst(inputBelleMDSTFile, path=my_path)

How to use B2BII?
• Just one line in your script:

convertBelleMdstToBelleIIMdst(inputBelleMDSTFile, path=my_path)

• Or maybe two…

from b2biiConversion import convertBelleMdstToBelleIIMdst
convertBelleMdstToBelleIIMdst(inputBelleMDSTFile, path=my_path)

Generate Belle MC in basf2
In Belle, MC samples are produced in two step:

1. Generate events with generators (phokhara, evtgen, pythia, etc…)

2. Run the gsim (simulation, reconstruction)

By replacing step 1, we can obtain Belle MC in basf2.

The only thing we need to do is to call the module `BelleMCOutput` like this:
main.add_module(phokhara)
main.add_module(evtgendecay)
main.add_module("BelleMCOutput", outputFileName=output_mdst)
main.add_module("PrintMCParticles", logLevel=basf2.LogLevel.DEBUG, onlyPrimaries=False)
main.add_module(“Progress")
basf2.process(main)

Offline analysis
Histograms, graphs, and fit

There are many softwares to handle the dataset, ROOT, pandas, etc…

=> Histograms, graphs. Visualize the variables.

==> Fit. Parameterize variables with theoretical expectation.

RooFit

Used in many analyses in HEP.

Optimized maximum likelihood fitter + lots of features.

ToyMC for systematic study

ToyMC for systematic study

谢谢！

