

Review of recent BESIII results

全国第二十届重味物理和CP破坏研讨会,16th Dec, 2023,上海

Outline

➤A brief introduction to BESIII

>Heavy quarkonium spectroscopy

>D meson and Λ_c baryon decay

>New physics search

≻Summary

1988年10月24日,邓小平同志"中国要在高科技领域占有一席之地"

BEPCII

Beijing Electron Positron Collider (BEPCII)

- ➤ First collision in 2008 & physics run in 2009.
- > $\sqrt{s} = 2.0 4.946$ GeV (tau-charm factory).
- Design Luminosity L_D=1×10³³ cm⁻²s⁻¹ @ 3.773 GeV (2016 achieved; 2022-2023 achieved 1.1×L_D).
- Continuous injection (top-up mode).

BESIII

Data – On resonance & Scan

Low energy scan: R-value, baryon pair

High luminosity scan: XYZ, Ds, Λ_{c} ...

Zhiqing Liu & Ryan Mitchell, Science Bulletin 68 (2023) 2148-2150

Heavy Charmonium(-like) Spectroscopy

BESIII high luminosity scan

Y(4260) fine structure

- There are fine structures in the famous "Y(4260) bump"
- ➤ Mass=(4222.0±3.1±1.4) MeV, Width=(44.1±4.3±2.0) MeV
- Most precise and significantly lower than 4.26 GeV

 $e+e-\rightarrow K^{+}K^{-}J/\psi$

M=(4708⁺¹⁷-15[±]21) MeV, Γ=(126⁺²⁷-23[±]30) MeV; significance>5σ

- One of the heaviest vector charmonium-like state
- Vector Hybrid, 5S charmonium, 5S-4D/6S-5D mixing

No obvious Zcs structure (only small hint at some Ecm)

$$R_{B} \equiv \frac{\mathcal{B}[Z_{cs}(3985)^{+} \to K^{+}J/\psi]}{\mathcal{B}[Z_{cs}(3985)^{+} \to (\bar{D}^{0}D_{s}^{*+} + \bar{D}^{*0}D_{s}^{+})]} < 0.03 @ 90\% \text{ CL}$$
11

e+e-→KsKsJ/ψ

$e+e-\rightarrow D_s^*D_s^*$ cross section

(c) Fitting result 3

 $Y(4660) \rightarrow \pi^{+}\pi^{-}\psi_{2}(3823)$

50

0

100

-50

- ► BESIII measure the E_{cm} dependent e+e- $\rightarrow \pi^+\pi^-\psi_2(3823)$ cross section
- > Resonance structure with $>5\sigma$ significance
- One single BW resonance

M=4417.5±26.2±3.5 MeV Γ=245±48±13

Two coherent Y(4360)+Y(4660)

Parameters	Solution I	Solution II
$M[R_1]$	4406.9 \pm	17.2 ± 4.5
$\Gamma_{ m tot}[R_1]$	128.1 ± 3	37.2 ± 2.3
$\Gamma_{\mathrm{e^+e^-}}\mathcal{B}_1^{R_1}\mathcal{B}_2$	$0.36 \pm 0.10 \pm 0.03$	$0.30 \pm 0.09 \pm 0.03$
$M[R_2]$	$4647.9\ \pm$	$\pm 8.6 \pm 0.8$
$\Gamma_{\rm tot}[R_2]$	33.1 ± 1	8.6 ± 4.1
$\Gamma_{\mathrm{e^+e^-}}\mathcal{B}_1^{R_2}\mathcal{B}_2$	$0.24 \pm 0.07 \pm 0.02$	$0.06 \pm 0.03 \pm 0.01$
ϕ	$267.1 \pm 16.2 \pm 3.2$	$-324.8 \pm 43.0 \pm 5.7$

$\Gamma[\psi(4660) \rightarrow \pi^+ \pi^- \psi_2(3823)$)] ~ 20%
$\Gamma[\psi(4660) \rightarrow \pi^+ \pi^- \psi(2S)]$	- / 20 / 0

- $f_0(980)\psi(2S)$ molecule
- Y(4260) radial excitation
- Baryonium…

 $e+e-\rightarrow D^{*0}D^{*+}\pi^{-}$

m₁=4209.6±4.7±5.9 MeV/c² , Γ₁=81.6±17.8±9.0 MeV; →Y(4230), coupling similar to D⁰D^{*+}π⁻ [Γ_{ee} >40 eV] m₂=4469.1±26.2±3.6 MeV/c² , Γ₂=246.3±36.7±9.4 MeV; →Y(4500), coupling much larger than KKJ/ψ m₃=4675.3±29.5±3.5 MeV/c² , Γ₃=218.3±72.9±9.3 MeV. →Y(4660), first open-charm decay

e+e- $\rightarrow \omega X(3872)$ production

- ➤ 4.7 fb⁻¹ data between 4.66 4.95 GeV
- > $\omega \rightarrow \pi^+\pi^-\pi^0$ & X(3872) $\rightarrow \pi^+\pi^-J/\psi$, one of the 4π could be missing to improve reconstruction efficiency
- New production mode: N(signal)=24.6±5.3 events, significance 7.8σ

\sqrt{s} (GeV)	$\mathcal{L}_{int}(pb^{-1})$	$N_{ m sig}$	$\epsilon(1+\delta)$ (%)	$\sigma^{\scriptscriptstyle B}(pb)$	$\sigma^{\scriptscriptstyle B}_{ m up}(pb)$	Significance
4.661	529.63	$0.33^{+1.36}_{-0.33}$	28.3	$0.5^{+2.1}_{-0.5}\pm 0.1\pm 0.2$	5.6	
4.682	1669.31	$8.00^{+3.34}_{-2.68}$	24.6	$4.6^{+1.9}_{-1.5} \pm 0.4 \pm 1.5$	11.5	3.4σ
4.699	536.45	$0.00^{+0.95}_{-0.00}$	27.0	$0.0^{+1.6}_{-0.0} \pm 0.0 \pm 0.0$	3.3	
4.740	164.27	$1.67^{+1.77}_{-1.10}$	21.8	$10.9^{+11.6}_{-7.2} \pm 1.0 \pm 3.5$	40.6	1.0σ
4.750	367.21	$5.00^{+2.58}_{-1.92}$	22.4	$14.2^{+7.4}_{-5.5} \pm 1.4 \pm 4.5$	38.2	3.1σ
4.781	512.78	$1.00^{+1.36}_{-0.70}$	31.6	$1.5^{+2.0}_{-1.0}\pm 0.2\pm 0.5$	6.5	0.7σ
4.843	527.29	$4.67^{+2.58}_{-1.92}$	26.7	$7.8^{+4.3}_{-3.2} \pm 0.7 \pm 2.5$	21.1	2.6σ
4.918	208.11	$1.00^{+1.36}_{-0.70}$	22.6	$5.0^{+6.8}_{-3.5}\pm 0.4\pm 1.6$	21.7	0.7σ
4.951	160.37	$0.00^{+0.95}_{-0.00}$	20.4	$0.0^{+6.8}_{-0.0}\pm 0.0\pm 0.0$	14.7	

Couple channel analysis of X(3872) line shape

+ $(\kappa_{\text{eff}}^c(E) + ik_{\text{eff}}^c(E))] + \frac{i}{2}\Gamma_0.$ $\Gamma_0 = (1 + \alpha + \beta)\Gamma_{\pi^+\pi^- J/\psi}$

D & Λ_c decay

(semi)Leptonic decay

Ideal bridge to access the strong and weak effects between quarks

$$\Gamma(D_{(s)}^{+} \to \ell^{+} \nu_{\ell}) = \frac{G_{F}^{2}}{8\pi} f_{D_{(s)}^{+}}^{2} |V_{cd(s)}|^{2} m_{\ell}^{2} m_{D_{(s)}^{+}} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2}$$

$$\frac{d\Gamma}{dq^2} = X \frac{G_F^2}{24\pi^3} |f_+^h(0)|^2 |V_{cq}|^2 |\vec{p}_h|^3$$

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} V_{us} V_{ub} \\ V_{cd} V_{cs} V_{cb} \\ V_{td} V_{ts} V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

CKM matrix elements: fundamental Standard Model (SM) parameters describing the mixing of quark fields due to weak interaction

Leptonic decay of $D^+_{(s)} \rightarrow l^+ \nu_l$

Status of f_{D^+} and $f_{D_s^+}$

				ETM(2+1+1)	PRD91(2015)054507	247.2±4.1	
FNAL/MILC	PRD98,074512	212.7±0.6	.	FMILC(2+1+1)	PRD98(2018)074512	249.9±0.4	•
				FLAG21(2+1+1)	EPJC82(2022)869	249.9±0.5	
RBC/UKQCD	JHEP1712,008	208.7±2.8 ^{+2.1}		HFLAV21	PRD107(2023)052008	252.2±2.5	H <mark>H</mark>
				CLEO	PRD79(2009)052002, $\tau_e v$ PRD80(2009)112004 $\tau_e v$	251.8±11.2±5.3	╟┈╇╌╢
ETM	PRD91,054507	207.4±3.8		CLEO	PRD79(2009)052001, $\tau_{\pi}v$	257.0±15.5±5.0 277.1±17.5±4.0	
				BaBar	PRD82(2010)091103 , $\tau_{e,\mu}^{n} v$	244.6±8.6±12.0	⊢ ⊢ •
FNAL/MILC	PRD90,074509	212.6±0.4 ^{+1.0}	•	Belle	JHEP09 (2013)139, $\tau_{e,\mu,\pi}$ V	261.1±4.8±7.2	H+H
				BESIII 0.482 ID - CLEO	PRD79(2009)052001 , μν	245.5±17.8±5.1 256.7±10.2±4.0	
HPQCD	PRD86,054510	208.3±3.4		BaBar	PRD82(2010)091103, μν	264.9±8.4±7.6	<mark>H ● H</mark>
				Belle	JHEP09(2013)139, μν PDI 122(2010)071802 μν	248.8±6.6±4.8	H <mark>- ● H</mark>
FNAL/MILC	PRD85,114506	218.9±11.3		BESIII 3.19 fb ⁻¹ BESIII 6.32 fb ⁻¹	PRD104(2021)052009 , μν	253.0±3.7±3.0 249.8±3.0±3.9	H ell
0.50	BBB70 050000			-			······
CLEO	PRD78,052003 , μν+τν	206.8±8.7±2.5		BESIII 6.32 fb ⁻¹	PRD104 (2021)052009, τ_{π} V PRD104 (2021)032001, τ V	249.7±6.0±4.2 251 6+5 9+4 9	╫╼╾╫ ╟╼╾╫
DECIN	DDD00.051104			BESIII 6.32 fb ⁻¹	PRL127(2021)171801 , τ _e ν	251.1±2.4±3.0	H <mark>ell</mark>
BESIII	Ρημοθ,051104, μν	203.815.211.8		BESIII 7.33 fb ⁻¹	arXiv:2303.12600 [hep-ex], $\tau_{\pi}v$	255.0±4.0±3.2	l <mark>++</mark> 1
DECIN	Expected (20fb ⁻¹)	202 242 041 5		BESIII 7.33 fb ⁻¹	$\frac{1}{\mu}$	253.4±4.0±3.7 252.4±1.7±2.1	Combined
DESIII	Expected (2010), $\mu\nu$	203.012.011.5					
				0	100	200	300
120	140 160	180 200	220	v	f_+ (MeV)	200	200
	f _D (Me	eV)			D_s^{+} (1910 V)		

Studies of $c \rightarrow sl^+\nu_l$ semileptonic decays

Studies of $c \rightarrow dl^+ v_l$ semileptonic decays

Status of $f_{+}^{D \to K}(0)$ and $f_{+}^{D \to \pi}(0)$

>4%

1.6%

Experimental precision of $f_{+}^{D \to K}(0)$ is comparable to the latest LQCD precision 0.1 0.2 0.3 0.4 0.5 0.6 0.7 $f_{+}^{D \rightarrow \pi}(0)$ Experimental precision of $f_{+}^{D \rightarrow \pi}(0)$ is still dominated by statistical uncertainties 24

Status of $|V_{cs}|$ and $|V_{cd}|$

Hadronic D decays – strong phase

•In SM, CKM matrix is unitary: four free parameter, one of them is the complex phase, the **only one source** of CPV in quark sector in SM !

•Precisely test the CKM matrix unitary & hunt for New Physics !

Need information of the D decays, e.g. strong-phase difference.CLEO-c and BESIII provides model-independent external inputs.

 fb^{-1}), ~ 0.4° in Phase II upgrade (~ 300 fb^{-1}).[arXiv:1709.10308, CERN-LHCC-2017-003]

• LHCb expect 1.5° by end of Run 3 (~ 22 fb⁻¹), <1° by end of Run 4 (~ 50

• Belle II expect 1.5° with 50 ab⁻¹ [2020 snowmass]

Hadronic D decays – strong phase

$$D \rightarrow K^- \pi^+ \pi^+ \pi^-$$
 and $K^- \pi^+ \pi^0$

27

Hadronic D decays – strong phase

D decays – light mesons

Further study of a0(980), f0(500)... is ongoing

- Single Tag for the golden channel
- High efficiency & low background
- Double Tag for the BF of $pK^-\pi^+$

- A plateau from threshold to 4.66 GeV (agree with previous measurement)
- No evidence for Y(4630) $\rightarrow \Lambda_c^+ \Lambda_c^-$
- A local structure near 4.75 GeV

$$lpha_{\Lambda_c} = (1 - \kappa R^2)/(1 + \kappa R^2)$$

 $R = |G_E/G_M| \quad \kappa = 4m^2c^4/s$

$$|G_E/G_M|(s) = \frac{1}{1 + \omega^2/r_0} [1 + r_1 e^{-r_2 \omega} \sin(r_3 \omega)]$$

 Λ_c^+ decays

Events/0.01 GeV

200

100

 $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ dynamics

3.7 σ evidence $\Lambda_c^+ \rightarrow p \pi^0$

🔶 Data

Signal

Inclusive hadronic background

 $\Lambda_c^+ \overline{\Lambda}_c^-$ background

PRL128(2022)142001

Decay	Yields	Branching fraction
$\Lambda_c^+ \to n\pi^+$	50 ± 9	$(6.6 \pm 1.2_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-4}$
$\Lambda_c^+ \to \Lambda \pi^+$	376 ± 22	$(1.31 \pm 0.08_{\text{stat}} \pm 0.05_{\text{syst}}) \times 10^{-2}$
$\Lambda_c^+ \to \Sigma^0 \pi^+$	343 ± 22	$(1.22 \pm 0.08_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-2}$

$$BF(\Lambda_c^+ \to p\pi^0) = (1.56^{+0.72}_{-0.58} \pm 0.20) \times 10^{-4}$$

$$\frac{B[\Lambda_c^+ \to n\pi^+]}{B[\Lambda_c^+ \to p\pi^0]} = 4.2^{+2.2}_{-1.9}$$

PRL129(2022)231803

 $\mathcal{B}(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e) = (3.56 \pm 0.11_{\text{stat}} \pm 0.07_{\text{syst}})\%$

31

Λ_c^+ decays

New Physics Search

Dark photon & Axion(-like)

ALP search at BESIII [PLB 838 (2023) 137698]

- 2.7B $\psi(2S) \rightarrow \pi \pi J/\psi$ with $J/\psi \rightarrow \gamma a$
- With J/ ψ decay directly (10 B)

$$g_{a\gamma\gamma} = \sqrt{\frac{\mathcal{B}(J/\psi \to \gamma a)}{\mathcal{B}(J/\psi \to e^+e^-)}} (1 - \frac{m_a^2}{m_{J/\psi}^2})^{-3} \frac{32\pi\alpha_{\rm en}}{m_{J/\psi}^2}$$

34

BNV & LFV & Z'

ີອົ

- Extra U(1) group X0 & X1 only couple to muon & tau
- Muon from J/ψ decay is 22 times larger than QED production
- Invisible model g_D is large, invisible decay

e

BEPCII-U upgrade

➤ Luminosity increased by a factor of 3 @ 2.35 GeV

- ➢ Beam energy up to 2.8 GeV
- Start running in 2025...

BESIII White paper Chinese Physics C Vol. 44, No. 4 (2020) 040001

Energy	Physics motivations	Current data	Expected final data
1.8 - 2.0 GeV	R values Nucleon cross-sections	N/A	0.1 fb ^{-1} (fine scan)
2.0 - 3.1 GeV	R values Cross-sections	Fine scan (20 energy points)	Complete scan (additional points)
J/ψ peak	Light hadron & Glueball J/ψ decays	3.2 fb^{-1} (10 billion)	3.2 fb^{-1} (10 billion)
$\psi(3686)$ peak	Light hadron & Glueball Charmonium decays	0.67 fb^{-1} (0.45 billion)	4.5 fb ^{$^{-1}$} (3.0 billion)
$\psi(3770)$ peak	D^0/D^{\pm} decays	2.9 fb^{-1}	20.0 fb^{-1}
3.8 - 4.6 GeV	<i>R</i> values <i>XYZ</i> /Open charm	Fine scan (105 energy points)	No requirement
4.180 GeV	D_s decay XYZ /Open charm	3.2 fb^{-1}	6 fb^{-1}
4.0 - 4.6 GeV	XYZ/Open charm Higher charmonia cross-sections	16.0 fb ⁻¹ at different \sqrt{s}	30 fb ⁻¹ at different \sqrt{s}
4.6 - 4.9 GeV	Charmed baryon/XYZ cross-sections	0.56 fb^{-1} at 4.6 GeV	15 fb ⁻¹ at different \sqrt{s}
4.74 GeV	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	1.0 fb^{-1}
4.91 GeV	$\Sigma_c \bar{\Sigma}_c$ cross-section	N/A	1.0 fb^{-1}
4.95 GeV	Ξ_c decays	N/A	$1.0 ext{ fb}^{-1}$

Summary

> BESIII is still an active and productive experiment after 15 years running.

- > New Charmonium(-like)/light hadron discoveries year-by-year.
- Precise measurement of Ds properties; 20/fb ψ(3770) data will greatly improve D measurement precision.
- > Study of Λ_c decays make a big contribution (dominant PDG list).
- \succ New Physics search is also popular.
- BEPCII-U upgrade will be done in 2024 & Machine commissioning in Jan. 2025

BESIII – A Hyperon/light meson factory

- > Br(J/ ψ \rightarrow $\gamma\eta$ ') ~ 5*10⁻³, η ' yield ~50 Million
- > Br(J/ ψ \rightarrow $\gamma\eta$) ~ 1*10⁻³, η yield ~10 Million
- > Br(J/ $\psi \rightarrow \Lambda \Lambda$) ~ 1.9*10⁻³; Λ yield ~20 Million
- > Br(J/ $\psi \rightarrow \Sigma^+ \Sigma^- / \Sigma^0 \Sigma^0$) ~ 1.2*10⁻³; Λ yield ~12 Million
- > Br($J/\psi \rightarrow \Xi^-\Xi^+/\Xi^0\Xi^0$) ~ 1*10⁻³; Λ yield ~10 Million

Polarization / NP Search (CP violation, EDM) / Decay dynamics

backup

