

Review of Belle and Belle II results

Yubo Li (李郁博) 全国第二十届重味物理和CP破坏研讨会 2023年12月16日

Update of accelerator

100µm

5mm

100µm _1

5mm

~50nm

Nano beam: small beamspot

2

Update of detector

Belle II : ~424 fb⁻¹

Belle : ~980 fb⁻¹

What are Belle and Belle II can do?

CKM

How do quarks participate in weak decays? -> CKM matrix

★ d → u: Nuclear physics (superallowed β decays)
★ s → u: Kaon physics (KLOE, KTeV, NA62)
★ c → d, s: Charm physics (CLEO-c, Babar, Belle, BESIII)
★ b → u, c and t → d, s: B physics (Babar, Belle, CDF, DØ, LHCb)
★ t → b: Top physics (CDF/DØ, ATLAS, CMS)

Semileptonic B Decays

♦ determine the CKM elements $|V_{cb}|$ and $|V_{ub}|$ ♦ Tests of lepton universality, $R(D^{(*)}), R(K^{(*)})$

Reconstruct a lepton and assign other tracks and clusters as an inclusive daughter *X*.

Reconstruct all daughters through specific channels exclusively.

The current experimental focus is on understanding the origin of this discrepancy.

Measurement of $|V_{cb}|$ and $|V_{ub}|$

Vxb-puzzle:

 $|V_{ub}^{\text{excl.}}| = (3.51 \pm 0.12) \times 10^{-3}$ Ratio = 0.84 ± 0.04 $|V_{ub}^{\text{incl.}}| = (4.19 \pm 0.16) \times 10^{-3}$

3.7 σ from unity!!

Status of |Vxb| measurments at Belle (II)

- O 4:20 PM 4:40 PM
- 信业悦你酒店 (上海)
 上海市嘉定区环城路762弄3号

Presenter 璐 曹

Inclusive measurement of. |V_{ub}|

PRD 104, 012008 (2021)

Hadronic Tag

 $B \to X_u \ell \nu$

 $X_u = \pi, \rho, \omega, \eta^{(\prime)}$, non-resonant contribution

$$V_{ub} \Big| = \sqrt{\frac{\Delta \mathscr{B}(B \to X_u \ell \nu)}{\tau_B \cdot \Delta \Gamma(B \to X_u \ell \nu)}} \Big|$$

Theoretical predictions of incl. decay rates (model-dependent!!)

Average: (4.10 ± 0.09_{stat} ± 0.22_{sys} ± 0.15_{theo})×10⁻³

> **Exclusive** $\leftrightarrow 1.3\sigma$ **CKMfit** $\leftrightarrow 1.6\sigma$

7

First Simultaneous Determination of
Inclusive and Exclusive $|V_{ub}|$ PRL131.211801(2023)

measurement of |V_{cb}|

 ϕ_3 : most Imprecision among ϕ_i

 $\phi_3 = \arg[\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}]$

- World average:
- Direct: $(66.2^{+3.4}_{-3.6})^{\circ}$, PRD 107 (2023) 052008]
- Indirect: $(66.29^{+0.72}_{-1.86})^{\circ}$, [JHEP03(2020)112]

$$\frac{\mathbf{A}^{suppr.}[B^{-} \rightarrow \overline{D^{0}}K^{-}]}{\mathbf{A}^{favor.}[B^{-} \rightarrow D^{0}K^{-}]} = r_{B}e^{i(\delta_{B}-\phi_{3})}$$

- Methods depending on different D final states:
 - **BPGGSZ**: self conjugated multi-body decays, e.g. $K_S^0 \pi^+ \pi^-$, $K_S^0 \pi^+ \pi^- \pi^0$, $\pi^+ \pi^- \pi^+ \pi^-$
 - **GLW**: CP eigenstates, e.g. $K_S^0 \pi^0$, $K^+ K^-$
 - ADS: CF and DCS decays, e.g. $K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^\pm\pi^\mp$
 - **GLS**: SCS decays, e.g. $K_S^0 K^{\mp} \pi^{\pm}$

Recent phi3 measurement at Belle II

- 3 4:40 PM 5:00 PM
- 信业悦你酒店 (上海)
 上海市嘉定区环城路762弄3号

Combined measurement of ϕ_3 with Belle & Belle II

- Four different methods using 17 different final states
- Inputs on D decays dynamics from other experiments
 - r_D (amplitude ratio), δ_D (strong-phase difference), κ_D (coherence factor), etc.

$B ext{ decay}$		D decay		Method Data set			
				(Bel	$ e + Belle II\rangle $	$[\mathrm{fb}^{-1}]$	
B^+ –	$\rightarrow Dh^+$	$D ightarrow K^0_{ m S} h^- h^+$	- В	PGGSZ	711+128	[JHEP 02 0	63 (2022)]
B^+ –	$\rightarrow Dh^+$	$D ightarrow K_{ m S}^0 \pi^- \pi^+$	π^0 B	BPGGSZ	711 + 0	[JHEP 10 1	78 (2019)]
B^+ –	$\rightarrow Dh^+$	$D ightarrow K_{ m S}^0 \pi^0, K$	K^-K^+	GLW	711+189	[arxiv:230	8.05048]
B^+ –	$\rightarrow Dh^+$	$D \rightarrow K^+ \pi^-, L$	$K^+\pi^-\pi^0$	ADS	711 + 0	[PRL 106 231	1803 (2011)]
B^+ –	$\rightarrow Dh^+$	$D ightarrow K_{ m s}^0 K^- \pi$	+	GLS	711+362	[JHEP 09 (2023) 146]
B^+ –	$\rightarrow D^*K^+$	$D \rightarrow K_{ m S}^0 \pi^- \pi^+$	F B	BPGGSZ	605 + 0	[PRD 81 112	2002 (2010)]
B^+ –	$\rightarrow D^*K^+$	$D ightarrow K_{ m s}^0 \pi^0, K_{ m K}^- K^+, \pi^- \pi^+$	$F^0_{ m s}\phi, K^0_{ m s}\omega,$	GLW	210 + 0	[PRD 73 051	106 (2006)]
Parameters	$\phi_3(^\circ)$	r_B^{DK}	$\delta_B^{DK}(^\circ)$	$r_B^{D\pi}$	$\delta^{D\pi}_B(^\circ)$	$r_B^{D^*K}$	$\delta_B^{D^*K}(\circ)$
			Plugin	method			
Best fit value	78.6	0.117	138.4	0.0165	347.0	0.234	341
68.3% interval	[71.4, 85.4]	[0.105, 0.130]	[129.1, 146.5]	[0.0109, 0.0220]	[337.4, 355.7]	[0.165, 0.303]	[327, 355]
95.5% interval	[63, 92]	[0.092, 0.141]	[118, 154]	[0.006, 0.027]	[322, 366]	[0.10, 0.37]	[307, 369]

 $\phi_3 = (78.6 \pm 7.3)^\circ$, consistent with WA, $\phi_3 = (66.2^{+3.2}_{-3.6})^\circ$, within 2σ

Foreseen precision of ϕ_3 is expected with the future Belle II dataset (current world-average $\delta \phi \sim 4^\circ$)

Preliminary

B anomalies

♦ Tests of lepton universality, $R(D^{(*)}), R(K^{(*)})$

Test of the lepton flavor universality at Belle II

- O 2:30 PM 2:50 PM
- 信业悦你酒店 (上海)
 上海市嘉定区环城路762弄3号

Presenter

启东/Qidong 周/Zhou

$$R(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^{-}\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^{-}\bar{\nu}_{\ell})}, (\ell = e \text{ or } \mu)$$

•LHCb: PRD 108 012018 (2023) =>reduce tension 2.49σ → 2.15σ
•Belle II: PRL 131 181801 (2023) => 40% improvement in statistical precision over Belle at the same sample size
LHCb: arXiv 2302.02886 => simultaneous measurement of R(D)

and $R(D^*)$, 1.9 σ tension

First measurement of $R(X_{\tau/\ell})$

arXiv:2311.07248

• $R(X_{\tau/\ell}) = \frac{\mathscr{B}(B \to X \tau \nu_{\tau})}{\mathscr{B}(B \to X \ell' \nu_{\ell})}$, measure inclusively. First measurement at B factories

- X reconstructed from remaining tracks and neutral clusters.
- Variables for yield extraction, 2D-fit to $M^2_{
 m miss}$ and p^B_{ℓ}
- Results:
 - $R(X_{\tau/e}) = 0.232 \pm 0.020(\text{stat.}) \pm 0.037(\text{syst.})$
 - $R(X_{\tau/\mu}) = 0.222 \pm 0.027(\text{stat.}) \pm 0.050(\text{syst.})$
- Combining:
 - $R(X_{\tau/\mu}) = 0.228 \pm 0.016(\text{stat.}) \pm 0.036(\text{syst.})$

In agreement with SM prediction and $R(D^{(*)})$ measurements

Angular asymmetries using $B^0 \rightarrow D^{*-} \ell^+ \nu$ arXiv:2311.07248

 $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_{\ell}$ is parameterized by the recoil parameter (*w*) and three decay angles (θ_l, χ, θ_V)

Agree well with the standard-mode

$$\mathcal{A}_{x}(w) = rac{N_{x}^{+}(w) - N_{x}^{-}(w)}{N_{x}^{+}(w) + N_{x}^{-}(w)}$$

$$\Delta \mathcal{A}_x(w) \equiv \mathcal{A}^{\mu}_x(w) - \mathcal{A}^{e}_x(w)$$

Search for $B^+ \rightarrow K^+ \nu \nu$

arXiv:2311.14647

The process is known with high accuracy in the SM: $\mathcal{B}(B^+ \to K^+ \nu \nu) = (5.6 \pm 0.4) \times 10^{-6} \text{ (arXiv:2207.13371)}$ $= 4.96 \times 10^{-6} \text{ with } B^+ \to \tau^+ (K^+ \nu) \nu \text{ removed.}$

Extensions beyond SM may lead to significant rate increase

Search for $B^+ \rightarrow K^+ \nu \nu$

Signal is extracted in terms of signal strength μ

signal relative to SM expectation

- Inclusive tag: $\mu = 5.4 \pm 1.0(\text{stat}) \pm 1.1(\text{syst})$
- Hadronic tag: $\mu = 2.2^{+1.8}_{-1.7}(\text{stat})^{+1.6}_{-1.1}(\text{syst})$
- Combined: $\mu = 4.6 \pm 1.0(\text{stat}) \pm 0.9(\text{syst})$

 $\mathscr{B} = 2.7 \pm 0.5(\text{stat}) \pm 0.5(\text{syst})$ $\mathscr{B} = 1.1^{+0.9}_{-0.8}(\text{stat})^{+0.8}_{-0.5}(\text{syst})$ $\mathscr{B} = 2.3 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})$

16

Search for $B^+ \rightarrow K^+ \nu \nu$

arXiv:2311.14647

First evidence for $B^+ \rightarrow K^+ \nu \nu$ decay

SMBelle II preliminary HTA $\int \mathcal{L} dt = (362 + 42) \, \text{fb}^{-1}$ 12.5ITA Combination 10.07.55.02.50.026 0 4 μ Average SMBelle II (362 fb⁻¹, combined) 2.3 ± 0.7 This analysis, preliminary Belle II (362 fb⁻¹, hadronic) 1.1 ± 1.1 This analysis, preliminary Belle II (362 fb⁻¹, inclusive) 2.7 ± 0.7 This analysis, preliminary Belle II (63 fb⁻¹, inclusive) 1.9 + 1.5 PRL127, 181802 Belle (711 fb⁻¹, semileptonic) 1.0 ± 0.6 PRD96, 091101 Belle (711 fb⁻¹, hadronic) 2.9 ± 1.6 PRD87, 111103 BaBar (418 fb⁻¹, semileptonic) 0.2±0.8 PRD82, 112002 BaBar (429 fb⁻¹, hadronic) 1.5±1.3 PRD87, 112005 0 24 6 8 10 $10^5 \times \text{Br}(B^+ \rightarrow K^+ \nu \bar{\nu})$

8

Measurements of $sin 2\phi_1$

- Sensitive to BSM physics
- Fit Δt to extract S_{CP} and C_{CP} :

$$f_{CP}^{\text{true}} = \frac{1}{4\tau_B^0} e^{-|\Delta t|} / \tau_B^0 (1 + q[S_{CP} \sin(\Delta m \Delta t) - C_{CP} \cos(\Delta m \Delta t)])$$

- SM expectation: $S_{CP} = \sin 2\phi_1$, and $C_{CP} = 0$
- Deviation from ${
 m sin}2\phi_1$ would suggest BSM physics

$sin2\phi_1 = 0.99 \pm 0.14 \pm 0.06$

channel	S_meas	C_meas	
$B^0 \to K_S^0 J/\psi$	$0.724 \pm 0.035 \pm 0.014$	$-0.035 \pm 0.026 \pm 0.012$	preliminary
$B^0 o K^0_S \pi^0 \gamma$	$0.04^{+0.45}_{-0.44} \pm 0.10$	$-0.06 \pm 0.25 \pm 0.07$	preliminary
$B^0 o \eta' K_S^0$	$0.67 \pm 0.10 \pm 0.04$	$-0.19 \pm 0.08 \pm 0.03$	preliminary
$B^0 o \pi^0 K_S^0$	$0.75^{+0.20}_{-0.23} \pm 0.04$	$-0.04^{+0.14}_{-0.15} \pm 0.05$	PRL 131, 111803 (2023)
$B^0 o \phi K_S^0$	$0.54 \pm 0.26^{+0.06}_{-0.08}$	$-0.31 \pm 0.20 \pm 0.05$	PRD 108, 072012 (2023)

Quarkonium & Exotic states

What are they?

Bottomonium? Or:

$\Upsilon(10750)$ state

observed in $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$

$\Upsilon(10753) \rightarrow \omega \chi_{bI} \text{ and } X_b \rightarrow \omega \Upsilon(1S)$ PRL 130, 091902 (2023) **Theory:** $\mathcal{B}(\Upsilon(10753) \rightarrow \omega \chi_{bI})$ and $\mathcal{B}(\Upsilon(10753) \rightarrow \pi^+ \pi^- \Upsilon(nS))$ are ~10⁻³ if Y(10753) is Y(4S) - Y(3D) mixing state [PRD 104, 034036] [PRD 105, 074007] 3.5/fb 1.6/fb 9.8/fb 4.7/fb Belle $\sigma(\Upsilon(2S)\pi^{+}\pi^{-})$ (pb) 9.8 fb⁻¹ ntegrated luminocity [fb⁻¹] Belle II 4.7 fb⁻¹ 3.5 fb⁻¹ 1.6 fb⁻¹ 18.60 10.65 10.70 10.75 10.80 10.85 10.5 10.6 10.7 10.8 10.9 E_{cm} [GeV] 11 E_{cm} (GeV) Belle II, 1.6, 9.8, and 4.7 fb⁻¹ Belle II data Clear $\omega \chi_{bJ}$ signals at $\sqrt{s} = 10.745$ and 10.805 GeV (qd) ʒ(e⁺e⁻→ωχ_{b1}) (pb) Belle data Total fit Solution I Belle II Preliminar Belle II Preliminary Ldt = 1.6 fb Ldt = 1.6 fb^{.1} Solution II ×3* s = 10.701 GeV √s = 10.701 GeV σ(e⁺e¯ Events / (10 MeV/c²) Beile II Preliminar Belle II Prelimina --- Data - Data Ldt = 9.8 fb⁻¹ Ldt = 9.8 fb Total fit 10.75 10.8 10.85 10.7 10.75 10.8 10.85 Total fit s = 10.745 GeV √s = 10.745 GeV √s (GeV) Backgrou 11.5σ $\frac{\sigma(e^+e^- \rightarrow \chi_{b1}\omega)}{\sigma(e^+e^- \rightarrow \chi_{b2}\omega)} \sim 1: \text{ consistent with HQFT}$ Belle II Preliminary Belle II Preliminar Ldt = 4.7 fb-1 Ldt = 4.7 fb-1 5.2σ vs = 10.805 GeV 10 s = 10.805 GeV $\frac{\sigma(e^+e^- \rightarrow \chi_{b1}\omega)}{\sigma(e^+e^- \rightarrow \pi \pi \Upsilon(2S))} \begin{cases} \sim 1.5 @\Upsilon(10753) \\ \sim 0.1 @\Upsilon(5S) \end{cases}$

Μ(γΥ(1S)) [GeV/c²]

Μ(π⁺π⁻π⁰) [GeV/c²]

difference in the internal structures $\Upsilon(5S)$ and $\Upsilon(10753)$

$\Upsilon(10753) \rightarrow \omega \chi_{bJ} \text{ and } X_b \rightarrow \omega \Upsilon(1S)$ PRL 130, 091902 (2023)

 $Y(4220) \rightarrow \gamma X(3872)$ and $\omega \chi_{c0}$ observed by BESIII. So we expect the observations of $\Upsilon(10753) \rightarrow \gamma X_b$ and $\omega \chi_{bJ}$.

• No significant X_b signal is observed.

• The peaks are the reflections of $e^+e^- \rightarrow \omega \chi_{bI}$.

From simulated events with $m(X_b) = 10.6 \text{ GeV}/c^2$ The yield is fixed at the upper limit at 90% C.L. Search for $e^+e^- \rightarrow \omega \eta_b(1S)$ and $e^+e^- \rightarrow \omega \chi_{b0}(1P)_{preliminary}$

□ Tetraquark (diquark-antidiquark) interpretation enhancement of Y(10753) $\rightarrow \omega \eta_b(1S)$ transition

$$rac{\Gamma(\eta_b \; \omega)}{\Gamma(\Upsilon \; \pi^+\pi^-)} \sim 30$$

Events/10 MeV Events / 5 MeV 40000 Data 120 Total fit 35000 η (1S) 100 30000 η (1S) UL at 90% CL 25000 80 20000 -- Data 60 Belle II. 9.8 fb⁻¹ Belle II, 9.8 fb⁻¹ 15000 Total fit √s = 10.745 GeV $\chi_{b0.1.2}(1P)$ 10000 √s = 10.745 GeV ····· χ_{b0}(1P) UL at 90% CL 5000 20 Events/10 MeV Events / 5 MeV 400 1000 200 500 -200-500 -400 -1000-6009.2 9.25 9.3 9.35 9.4 9.45 9.5 9.55 9.6 9.82 9.84 9.86 9.88 9.9 9.92 9.94 9.78 9.8 $M_{recoil}(\pi^+\pi^-\pi^0)$ [GeV/c²] $M_{recoil}(\pi^+ \pi^- \pi^0)$ [GeV/c²]

[Chin. Phys. C 43, 123102 (2019)].

Recoiling the ω

The yields for $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ are fixed [PRL 130, 091902 (2023)].

 $\begin{array}{ll} \mbox{Tetraquark model in Ref. [CPC 43, 123102]:} \\ \hline \Gamma(\Upsilon(10753) \rightarrow \eta_b(1S)\omega) = 2.64^{+4.70}_{-1.69} \ {\rm MeV} \\ \hline \Gamma(\Upsilon(10753) \rightarrow \Upsilon\pi^+\pi^-) = 0.08^{+0.20}_{-0.06} \ {\rm MeV} \end{array} \end{array} \begin{array}{ll} \mbox{This measurement and JHEP 10, 220 (2019):} \\ \hline \sigma^B(\Upsilon(10753) \rightarrow \eta_b(1S)\omega) < 2.5 \ {\rm pb} \\ \sigma^B(\Upsilon(10753) \rightarrow \Upsilon(2S)\pi^+\pi^-) \approx (3 \pm 1) \ {\rm pb} \end{array} \end{array} \\ \begin{array}{ll} \mbox{No clear } \eta_b(1S) \ {\rm and} \ \chi_{b0}(1P) \\ \mbox{signals are observed.} \\ \mbox{not support the prediction} \end{array}$

Update of the cross section of $e^+e^- \rightarrow \pi\pi\Upsilon(nS)$

preliminary

The $e^+e^- \rightarrow B\overline{B}$, $B\overline{B}^*$ and $B^*\overline{B}^*$ cross sections

preliminary

Solid curve: fit to Belle + Belle II data Dashed curve: fit to Belle data fit only New: rapid increase of $\sigma_{B^*\bar{B}^*}$ above the threshold

- Similar behaviour was seen for D*D
 *Cross section (PRD 97, 012002 (2018))
- Possible interpretation: resonance or bound state (B*B* or bb) near threshold (MPL A 21, 2779 (2006))
- Also explains a narrow dip in $\sigma(e^+e^- \rightarrow B\overline{B}^*)$ near $B^*\overline{B}^*$ threshold by destructive interference between $e^+e^- \rightarrow B\overline{B}^*$ and $e^+e^- \rightarrow$ $B^*\overline{B}^* \rightarrow B\overline{B}^*$
- Inelastic channels $[\pi^+\pi^-\Upsilon(nS)]$ and h_b(1P) η] could also be enhanced (PRD 87, 094033 (2013))

Normal Charm

Charmed Baryon: new states; parameters; decays..

Baryons produced via fragmentation

- Charmed baryons rather direct
- Hyperons later stage of fragmentation

Huge statistics

B is efficiently produced via Y(4s)

Once bottom is produced, it favorably decays into charm.

Analysis of heavy baryon lifetimes

- 4:50 PM 5:10 PM
- 0 信业悦你酒店 (上海) 上海市嘉定区环城路762弄3号

Hai-Yang Cheng Presenter

 $/1_{c}$

udc

 $\frac{\Xi_c^0}{dsc}$

Charm mesons: lifetimes good vertex

Lifetime measurements

Evidence of $\Lambda_c(2910)^+$

PRL 130, 031901 (2023)

Theoretical interpretation:

- $\Lambda_c(2940)$: $J^P = \frac{1}{2}^-$ state, lies in other Regge trajectories > search for $\Lambda_c(3005)$?
- Like $\Lambda(1405)$, $D_s(2317)$, X(3872), D*N contribute in $\Lambda_c(2940)$
 - Mass of $\Lambda_{c}\left(\frac{1}{2}, 2P\right)$ invese, and larger than $\Lambda_{c}\left(\frac{3}{2}, 2P\right)$

A new structure in M_{Σcπ} spectrum is seen m = (2913.8±5.6+3.7) MeV/c² Γ = (51.8±20.0±18.8) MeV
Statistic significance: 6.1σ
most conservative significance include syst. err: 4.2σ
Possible J^p = 1/2⁻, agrees with Λ_c (1/2⁻, 2P)
Need more study to confirm its nature
See talk from 岳自力 tomorrow

17:10—17:30 Strong decays of the $\Lambda_c(2910)$ and $\Lambda_c(2940)$ in D^(*)N molecular picture 岳自力 28

τ physics

♀ 嘉定喜来登酒店(上海) 上海市嘉定区菊园新区嘉唐公路66号

@10.58 GeV:

$$\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \ nb$$

$$\sigma(e^+e^- \rightarrow \Upsilon(4S)) = 1.11 \ nb$$

Features of a B-Factory (super τ -charm Factory):

- High luminosity.
- Well-defined initial state.
- High vertex resolution.
- Excellent calorimetry.
- Sophisticated particle ID.
- Ability to trigger low-multiplicity event

Presenter Chunhua Li

τ physics

input	Uncertainty (%)	Best Measurement	
$\mathcal{B}(\tau^- o \ell^- \overline{v}_\ell v_\tau(\gamma))$	0.180	ALEPH	
ττ	0.172	Belle	
$m_{ au}$	0.007	BES III	

Measurement of τ mass

Pseudomass method:

 $m_{\tau}^2 \; = \; (p_h + p_{\nu})^2$

 $= 2 E_h (E_\tau - E_h) + m_h^2 - 2|\vec{p}_h|(E_\tau - E_h)\cos(\vec{p}_h, \vec{p}_\nu)$ PRD 108, 032006 (2023)

The direction of the neutrino is not known, since $\cos(\vec{p}_h, \vec{p}_v) \le 1$ Pseudomass:

World's best measurement of the τ mass!

- Pid uncertainty dominant
- consistent with previous measurements
- most precise to date

Source	Uncertainty $[\%]$
Charged-particle identification:	
Electron identification	0.22
Muon misidentification	0.19
Electron misidentification	0.12
Muon identification	0.05
Trigger	0.10
	32

 $\tau^- \rightarrow \ell^- \alpha$ It probes the existence of a long-lived invisible gauge boson boson α . • Possible DM candidate.

Most stringent limits in these channels to date! (2-14 times more constraining than Argus)

PRL 130, 181803 (2023)

Michel Parameter ξ' via $\tau \rightarrow \mu(\rightarrow e \nu \nu) \nu \nu$

$$\frac{d^{3}\Gamma}{dx\,dy\,d\cos\theta'_{e}} = \mathcal{B}(\mu \to e\nu\nu) \frac{12\Gamma_{\tau \to \mu\nu\nu}}{1 - 3x_{0}^{2}} y^{2} \sqrt{x^{2} - x_{0}^{2}} \left[(3 - 2y)(3x - 2x^{2} - x_{0}^{2}) \right]$$

$$(\xi') 2y - 1) \sqrt{x^{2} - x_{0}^{2}} \left(2x - 3 + \frac{x_{0}^{2}}{2} \right) \cos\theta'_{e} \right].$$

$$\sum_{\varepsilon,\omega=L,R} \left(\frac{1}{4} |g_{\varepsilon\omega}^{S}|^{2} + |g_{\varepsilon\omega}^{V}|^{2} + 3|g_{\varepsilon\omega}^{T}|^{2} \right) \equiv 1 \quad PRL \, 131, \, 021801 \, (2023) \\ PRD \, 108, \, 012003 \, (2023)$$

$$\xi' = 1 - 2 \sum_{\omega=L,R} \left(\frac{1}{4} |g_{R\omega}^{S}|^{2} + |g_{R\omega}^{V}|^{2} + 3|g_{R\omega}^{T}|^{2} \right)$$

Probability of an unpolarized τ lepton to decay to a right-handed muon: $(1 - \xi')/2$ $\xi' = 1$ in SM

					,		
MP (SM)	$\mu \to e \nu_e \nu_\mu$	$\tau \to e \nu_e \nu_\tau$	$\tau \to \mu \nu_\mu \nu_\tau$	MP (SM)	$\mu \to e \nu_e \nu_\mu$	$\tau \to e \nu_e \nu_\tau$	$\tau \to \mu \nu_\mu \nu_\tau$
$\rho(0.75)$	0.74979± 0.00026	0.747 ± 0.010	0.763 ± 0.020	$\alpha'/A(0)$	-0.010 ± 0.020		
$\xi(1)$		0.994 ± 0.040	1.030 ± 0.059	$\beta/A(0)$	0.004 ± 0.006		
η (0)	0.057 ± 0.034	0.013 ± 0.020	0.094 ± 0.073	$\beta'/A(0)$	0.002 ± 0.007		
$\xi \cdot \delta(0.75)$		0.734 ± 0.028	0.778 ± 0.037	<i>a/A</i> (0)			
$\delta(0.75)$	0.75047± 0.00034			a'/A(0)			
$\xi \cdot \delta / \rho \left(1 \right)$	$1.0018\substack{+0.0016\\-0.0007}$			(b'+b)/A(0)		LEGACY	
$\xi'(1)$	1.00 ± 0.04		Target	<i>c/A</i> (0)			

34

Michel Parameter ξ' via $\tau \rightarrow \mu(\rightarrow e \nu \nu) \nu \nu$

PRL 131, 021801 (2023) PRD 108, 012003 (2023)

-1.0

-0.5

0.0

 $\cos\theta_{e}$

0.5

1.0

35

Future

The more we know, the more we do not know!

谢谢大家

Decay mode	Paper	comment
$\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^+$	Belle: PRL 130, 151903 (2023)	Peaks at 1434 MeV $M_{\Lambda\pi^{\pm}}$
$\Lambda_c^+ \to \Lambda \eta^{(\prime)}$	Belle: PRD 107, 032003 (2023)	
$\Lambda_c^+ \to \Lambda h, \Sigma^0 h$	Belle: 科学通报 68 583 (2023) BESIII: PRD 106,L111101(2022) PRD106,052003(2022)	CPV measurement for Belle
$\Lambda_c^+ \rightarrow \mathrm{pK}_s K_s, \mathrm{pK}_s \eta$	Belle: PRD 107, 032004 (2023)	
$\Lambda_c^+ \to \Sigma^+ \gamma, \Xi_c^0 \to \Xi^0 \gamma$	Belle: PRD 107, 032001 (2023) BESIII: arXiv 2212.07214	no evident signal
$\Lambda_c^+ \to \mathrm{pK}^+\pi^-$	Belle: PRD 108 3 (2023) LHCb: PRD 108 012023 (2023)	Amplitude analysis from LHCb, observe $\Lambda(2000)$
$\Lambda_c^+ \to p\eta, p\omega$ $\Lambda_c^+ \to p\pi^0$	Belle: PRD 104, 072008 (2021) Belle: PRD 103, 072004 (2021)	
$\Lambda_c^+ \to p\eta'$	Belle: JHEP 03 2022, 090 (2022)	
$\Xi_c^+ \to \Lambda K_S, \Sigma^0 K_S, \Sigma^+ K^-$	Belle: PRD 105, L011102 (2022)	
$\Omega_c^0 \to \Xi^- \pi^+, \Xi K^+, \Omega^- K^+$	Belle: JHEP 01 055 (2023) LHCb: arXiv 2308.08512	No evidence of CS decay from Belle CS decay observed by LHCb

Charm Decays

Other recent search for CPV in Charm sector: not see CPV in all cases

Decay mode	Paper
$D^{+}_{(s)} \to K^{+}K^{-}\pi^{+}\pi^{0}, \\ \to K^{+}\pi^{-}\pi^{+}\pi^{0} \\ D^{+} \to K^{-}\pi^{+}\pi^{+}\pi^{0}$	Belle: arXiv 2305.12806
$D^0 \to K^0_s K^0_s \pi^+ \pi^-$	Belle: PRD 107, 052001 (2023)
$D^+_{(s)} \rightarrow K^+ K^0_s h^+ h^-$ $D^+_s \rightarrow K^+ K^- K^0_s \pi^+$	Belle: arXiv 2305.11405

Background

Determine lifetime by measuring vertex displacement and momentum:

• lifetime determined from unbinned ML fit to t. Likelihood function for event i:

$$\mathcal{L}(au|t^i,\sigma^i_t) \;=\; f_{ ext{sig}} \, oldsymbol{P_{ ext{sig}}}(t^i| au,\sigma^i_t) \, oldsymbol{P_{ ext{sig}}}(\sigma^i_t) \;+\; (1-f_{ ext{sig}}) \, oldsymbol{P_{ ext{bkg}}}(t^i| au,\sigma^i_t) \, oldsymbol{P_{ ext{bkg}}}(\sigma^i_t) \; oldsymbol{P_{ ext{bkg}}}$$

(to avoid bias: Punzi, arXiv:physics/0401045)

Source	Uncertainty (fs)
Fit bias	3.4
Resolution model	6.2
Background model	8.3
Detector alignment	1.6
Momentum scale	0.2
Input Ω_c^0 mass	0.2
Total	11.0

Background Theoretical function

The complete form of the theoretical function to measure MP ξ'

$$\frac{d\sigma(e^+e^- \to [\tau^- \to (\mu^- \to e^-\bar{\nu}_e\nu_\mu)\bar{\nu}_\mu\nu_\tau]\tau^+)}{d\Omega_\tau dx dy d\cos\theta'_e dt} = \frac{\Gamma_{\tau \to \mu}}{\Gamma_\tau} \frac{2}{\tau_\mu} \frac{\alpha^2\beta}{16E^2} A_0 y^2 \sqrt{x^2 - x_0^2} \times ((3 - 2y)F_{IS}(x) - (1 - 2y)F_{IP}(x)\cos\theta'_e))$$

- Here $\cos \theta'_e = (\overrightarrow{n}^{\mu'}, \overrightarrow{n}^e)$, where $n^{\mu'}_{\ i} = M_{ij}n^{\mu}_{j}$ and n^{μ}_{j} is muon direction in τ -lepton rest frame at the muon production vertex, n^e_i is electron direction in the muon rest frame. M_{ij} is a rotation matrix. The transition to the angle between electron and τ -lepton momenta in the muon rest frame is done through Jacobian
- The publication with the theoretical calculation of this function will be released soon at arxiv (hope by the end of 2021)
- The important thing to understand now we have a theoretical calculation of the dependence in the rotation angle

CKM	Process	Observables			Theoretical inputs		
$ V_{ud} $	$0^+ ightarrow 0^+ \ eta$	$ V_{ud} _{ m nucl} = 0.97420 \pm 0 \pm 0.00021$		Nuclear matrix elements			
$ V_{us} $	$K \to \pi \ell \nu$	$ V_{us} _{\mathrm{SL}}f_{+}^{K\to\pi}(0)$	=	0.2165 ± 0.0004	$f_+^{K \to \pi}(0)$	=	$0.9681 \pm 0.0014 \pm 0.0022$
	$K \to e \nu$	${\cal B}(K o e u)$	=	$(1.582 \pm 0.007) \cdot 10^{-5}$	f_K	=	$155.6 \pm 0.2 \pm 0.6 ~{\rm MeV}$
	$K o \mu u$	${\cal B}(K o \mu u)$	=	0.6356 ± 0.0011			
	au o K u	${\cal B}(au o K u)$	=	$(0.6960 \pm 0.0096) \cdot 10^{-2}$			
$\frac{ V_{us} }{ V_{ud} }$	$K ightarrow \mu u / \pi ightarrow \mu u$	$rac{\mathcal{B}(K o \mu u)}{\mathcal{B}(\pi o \mu u)}$	=	1.3367 ± 0.0029	f_K/f_π	=	$1.1959 \pm 0.0007 \pm 0.0029$
	$\tau \to K \nu / \tau \to \pi \nu$	$rac{\mathcal{B}(au o K u)}{\mathcal{B}(au o \pi u)}$	=	$(6.438 \pm 0.094) \cdot 10^{-2}$			
$ V_{cd} $	u N	$ V_{cd} _{ m not\ lattice}$	=	0.230 ± 0.011			
	$D ightarrow \mu u$	${\cal B}(D o \mu u)$	=	$(3.74 \pm 0.17) \cdot 10^{-4}$	f_{D_s}/f_D	=	$1.175 \pm 0.001 \pm 0.004$
	$D o \pi \ell u$	$ V_{cd} f_+^{D o\pi}(0)$	=	0.1426 ± 0.0019	$f^{D o \pi}_+(0)$	=	$0.621 \pm 0.016 \pm 0.012$
$ V_{cs} $	$W \to c \bar{s}$	$ V_{cs} _{\rm not\ lattice}$	=	$0.94^{+0.32}_{-0.26}\pm 0.13$			
	$D_s ightarrow au u$	$\mathcal{B}(D_s \to \tau \nu)$	=	$(5.55 \pm 0.24) \cdot 10^{-2}$	f_{D_s}	=	$247.8 \pm 0.3 \pm 2.0 ~{\rm MeV}$
	$D_s o \mu u$	${\cal B}(D_s o \mu u)$	=	$(5.39 \pm 0.16) \cdot 10^{-3}$			
	$D \to K \ell \nu$	$ V_{cs} f_+^{D\to K}(0)$	=	0.7226 ± 0.0034	$f_+^{D \to K}(0)$	=	$0.741 \pm 0.010 \pm 0.012$
$ V_{ub} $	semileptonic B	$ V_{ub} _{\rm SL} = (3.98 \pm 0.08 \pm 0.22) \cdot 10^{-3}$		for	m fact	ors, shape functions	
	B ightarrow au u	$\mathcal{B}(B \to \tau \nu)$	=	$(1.08 \pm 0.21) \cdot 10^{-4}$	f_{B_s}/f_B	=	$1.205 \pm 0.004 \pm 0.006$
$ V_{cb} $	semileptonic B	$ V_{cb} _{\rm SL}$	=	$(41.8 \pm 0.4 \pm 0.6) \cdot 10^{-3}$	form	factors,	OPE matrix elements
$\left V_{ub}/V_{cb} ight $	semileptonic Λ_b	$\frac{\mathcal{B}(\Lambda_p \to p\mu^-\bar{\nu})_{q^2 > 15}}{\mathcal{B}(\Lambda_p \to \Lambda_c \mu^-\bar{\nu})_{q^2 > 7}}$	=	$(0.947 \pm 0.081) \cdot 10^{-2}$	$\frac{\zeta(\Lambda_p \to p\mu^- \bar{\nu})_{q^2 > 15}}{\zeta(\Lambda_p \to \Lambda_c \mu^- \bar{\nu})_{q^2 > 7}} = 1.471 \pm 0.096 \pm 0.290$		$\frac{>15}{^2>7} = 1.471 \pm 0.096 \pm 0.290$
α	$B \to \pi \pi, \ \rho \pi, \ \rho \rho$	branching	ratios	s, CP asymmetries	isospin symmetry		
β	$B \to (c\bar{c})K$	$\sin(2\beta)_{[car c]}$	=	0.699 ± 0.017	sub	leading	g penguins neglected
$\cos(2\beta)$	$B^0 o D^{(*)} h^0$	$\cos(2\beta)$	=	0.91 ± 0.25			
γ	$B \to D^{(*)} K^{(*)}$	inputs for the 3 methods		GGSZ, GLW, ADS methods			
ϕ_s	$B_s \to J/\psi(KK,\pi\pi)$	$(\phi_s)_{b ightarrow car cs}$	=	-0.021 ± 0.031			
$V_{tq}^* V_{tq'}$	Δm_d	Δm_d	=	$0.5065\pm0.0019~{\rm ps}^{-1}$	$\hat{B}_{B_s}/\hat{B}_{B_d}$	=	$1.007 \pm 0.013 \pm 0.014$
• -	Δm_s	Δm_s	=	$17.757 \pm 0.021 \text{ ps}^{-1}$	\hat{B}_{B_s}	=	$1.327 \pm 0.016 \pm 0.030$
	$B_s o \mu \mu$	$\mathcal{B}(B_s o \mu \mu)$	=	$(2.8^{+0.7}_{-0.6}) \cdot 10^{-9} [\times (1 - 0.063)]$	f_{B_s}	=	$226.0 \pm 1.3 \pm 2.0 ~{\rm MeV}$
$V_{td}^* V_{ts}$ and	ε_K	$ \varepsilon_K $	=	$(2.228 \pm 0.011) \cdot 10^{-3}$	\hat{B}_K	=	$0.7567 \pm 0.0021 \pm 0.0123$
$V_{cd}^{*}V_{cs}$					$\kappa_{arepsilon}$	=	$0.940 \pm 0.013 \pm 0.023$

https://indico.cern.ch/event/684284/contributions/2952455/attach ments/1719296/2774804/Vale_Silva_3.pdf

42

Charm Decays

From S. Descotes-Genon

 $|V_{cs}|, |V_{cd}|$: (semi-)leptonic charm decays (can be done and should be done, but none has done anything yet) $|V_{ub}|, |V_{cb}|$: (semi-)leptonic *B* decays $|V_{td}|, |V_{ts}|$: $\Delta m_d, \Delta m_s$

$$\alpha: B o \pi\pi, B o
ho\pi, B o
ho
ho$$
, isospin

analyses

- $\beta: B \to (\overline{c}c)K, B \to Dh^0$, time-dependent CP violation
- $\gamma: B \rightarrow DK$, ADS/GLW/GGSZ
- $\phi_s: B_s^0 \to (c\overline{c})(KK, \pi\pi)$, time-dependent CP violation
- $-2\beta_{c} + \nu: B_{c} \rightarrow D_{s}K$

$$\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 \text{ rad},$$

 $\pm 0.0013 (D_s) \pm 0.0068 (FF),$

- ✓ Large "bg" contribution from $B \to X_c l \nu$
- ▶ Treat $B \rightarrow X_c l \nu$ as part of signal
 - ✓ Simultaneously measure $|V_{ub}| \& |V_{ub}|$
 - ✓ $B \to X_u l \nu$ dominate (>86%) in high p_l^B bins
- > LHCb: 2 fb⁻¹data at 8 pp collisions
- > Observation of $B_s^0 \to K^- \mu^+ \nu_\mu l$
 - Branching fraction measurement

$$R_{\rm BF} = \frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)}$$

✓ Determination of $|V_{ub}| / |V_{ub}|$ in low/high q^2 bins

LHCb, PRL126.081804(2021), [arXiv: 2303.17309]

- > A few selected recent measurements from Belle(II) and LHCb experiments
 - ✓ Measurements of $|V_{cb}| \& |V_{ub}|$
 - ✓ Tests of lepton universality
- > Discrepancies (> 3σ) of measured $|V_{cb}|$ and $|V_{ub}|$ between inclusive and exclusive final states remains
 - Measurements not limited by statistical precision
 - ✓ Better design analysis choice to reduce systematic uncertainties
 - ✓ Many systematic uncertainties can be reduced with more data
 - ✓ Important to improve precision of theoretical calculations
- > Deviation of measured $R_{D^{(*)}}$ from the SM prediction remains (> 3 σ)
 - ✓ More precise measurement expected with more coming data
 - ✓ Measurements as a function of q^2 and angular distributions
- Test muon and electron universality: inclusive and angular distributions
 ✓ Systematic uncertainties that will further be reduced with more data

Semileptonic *b*-hadron offer reach opportunities to look for NP, expect new results soon

Why weak decay?

Leptonic decay

$$B[M \to l\nu_l]_{\text{SM}}$$

$$= \frac{G_F^2 m_M m_l^2}{8\pi} \left(1 - \frac{m_l^2}{m_M^2}\right)^2 \left|V_{q_i q_j}\right|^2 f_M^2 \tau_M \left(1 + \delta_{em}^{M12}\right)$$

Semi-leptonic decay

$$\frac{d\Gamma(M \to P | \nu)}{dq^2} = \frac{G_F^2 \left| V_{q_u q_d} \right|^2}{24\pi^3} \frac{\left(q^2 - m_1^2\right)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_H^2} \\ \times \left[\left(1 + \frac{m_1^2}{2q^2}\right) m_M^2 (E_P^2 - m_P^2) \left| f_+(q^2) \right|^2 + \frac{3m_1^2}{8q^2} (m_M^2 - m_P^2)^2 \left| f_0(q^2) \right|^2 \dots \right] \\ \frac{\overline{\left[\frac{0^+ 0^- 1^- 1^+ 2^+}{B_{(l)} \to X^\ell l \bar{\nu} - A_0} \frac{0^+ 0^- 1^- 1^+ 2^+}{f_1 - f_1} \right]}{B_{(l)} \to X^* \ell \bar{\nu} - A_0 \frac{V_0}{V_0} \frac{A_{1,A_2}}{A_{1,A_2}} T_{1,T_2,T_3}}$$

$$B^{-} \left\{ \begin{array}{c} b \\ \overline{u} \end{array} \right\} \left\{ \begin{array}{c} c \\ \overline{u} \end{array} \right\} D^{0}$$

hadronic decay

**

Extract CKM Matrix parameters: |V_{qq}'|, φ_i (test unitarity)
CPV

Extract CKM Matrix parameters: |V_{qq}'|, φ_i (test unitarity)

CPV

<pre

other hadrons)

GLS result (Belle+Bellell!)

- $B^{\pm} \to DK^{\pm}$ with $D \to K^0_S K^+ \pi^-$ (SS) or $D \to K^0_S K^- \pi^+$ (OS)
- Measure 4 Acp and 3 BR ratios.
- Get results in full D phase space and in the K*K region (large δ_D).

$$\begin{split} A_{SS}^{DK} &= \frac{2r_B^{DK}r_D\kappa_D\sin(\delta_B^{DK} - \delta_D)\sin\phi_3}{1 + (r_B^{DK})^2r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} - \delta_D)\cos\phi_3}, \\ A_{OS}^{DK} &= \frac{2r_B^{DK}r_D\kappa_D\sin(\delta_B^{DK} + \delta_D)\sin\phi_3}{(r_B^{DK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} + \delta_D)\cos\phi_3}, \\ A_{SS}^{D\pi} &= \frac{2r_B^{D\pi}r_D\kappa_D\sin(\delta_B^{D\pi} - \delta_D)\sin\phi_3}{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ A_{OS}^{D\pi} &= \frac{2r_B^{D\pi}r_D\kappa_D\sin(\delta_B^{D\pi} + \delta_D)\sin\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}. \\ R_{SS}^{DK/D\pi} &= R\frac{1 + (r_B^{DK})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{1 + (r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ R_{OS}^{DK/D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} + \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}, \\ R_{OS}^{DK/D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}, \\ R_{SS/OS}^{D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}, \\ R_{SS/OS}^{D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}. \end{split}$$

• 2D Fit (ΔE , C') of 8 categories (DK, $D\pi$)x(SS, OS)x(+,-)

GLS result (Belle+Bellell!)

- $B^{\pm} \to DK^{\pm}$ with $D \to K^0_S K^+ \pi^-$ (SS) or $D \to K^0_S K^- \pi^+$ (OS)
- Measure 4 Acp and 3 BR ratios.
- Get results in full D phase space and in the K*K region (large δ_D).

In K*K region: $A_{SS}^{DK} = 0.055 \pm 0.119 \pm 0.020,$ $A_{OS}^{DK} = 0.231 \pm 0.184 \pm 0.014,$ $A_{SS}^{D\pi} = 0.046 \pm 0.029 \pm 0.016,$ $A_{OS}^{D\pi} = 0.009 \pm 0.046 \pm 0.009,$ $R_{SS}^{DK/D\pi} = 0.093 \pm 0.012 \pm 0.005,$ $R_{OS}^{DK/D\pi} = 0.103 \pm 0.020 \pm 0.006,$ $R_{SS/OS}^{D\pi} = 2.412 \pm 0.132 \pm 0.019,$

arXiv:2306.02940

- First Belle/Belle II result from this channel.
- The precision is worse than LCHb's <a>[arXiv: 2002.08858]
- With the D information from CLEO-c, will contributed in a combined ϕ_3 from Belle/ BelleII. (May get out this summer)

 Model-independent result from CLEO-c.[arXiv:<u>1203.3804]</u>

GLW result (Belle+Bellell!)

• $B^{\pm} o DK^{\pm}$ with $D o K^0_S \pi^0$ (CP-odd) or $D o K^+ K^-$ (CP-even

$$\begin{split} R_{CP\pm} &= \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D^0K^-) + \mathcal{B}(B^+ \to \bar{D}^0K^+)}, \\ &= 1 + r_B^2 + 2\eta_{CP}r_B\cos(\delta_B)\cos(\phi_3), \\ A_{CP\pm} &= \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) - \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}, \\ &= 2\eta_{CP}r_B\sin(\delta_B)\sin(\phi_3)/R_{CP\pm}. \end{split}$$

$$K^{+}K^{-} (CP\text{-even}) = 2D \text{ Fit } (\Delta E, C') \text{ of } 6 \text{ categories} (DK, D\pi) \times (K_{S}^{0}\pi^{0}, K^{+}K^{-}, K^{-}\pi^{+})$$

 $R_{CP\pm}$

Measurement of CKM angle ϕ_3

Belle II Measurements of CKM angle ϕ_3

• These results can provide constraint on ϕ_3

LHCb Measurements of CKM angle ϕ_3

$$--B^- \rightarrow D^* (\rightarrow D(\rightarrow K_S h^+ h^-) \pi^0 / \gamma) h^-$$

