

2023年12月15-18日,上海嘉定信业悦你酒店,上海 全国第二十届重味物理和CP破坏研讨会(HFCPV-2023)

Test of lepton flavor universality at Belle II

Qi-Dong Zhou (周启东) (山东大学前沿交叉科学青岛研究院)

- Universality: W boson couples to leptons with equal strength
 - Lepton Flavor Universality (LFU) is fundamental axiom of \bar{B}^0 Standard Model (SM)
- Ratios of $b \rightarrow q\tau v/q\mu v/qev$ branch fractions cancel out most of the uncertainties on $|V_{cb}|$, form factors and the experimental systematics
- $B \rightarrow D^{(*)}\tau v$ sensitive to New Physics (NP) because the massive 3rd generation b quark and τ lepton are involved

New physics scenarios for the $R(D^{(*)})$ anomaly

In general, there are three typical candidate scenarios to explain the anomaly observed in $R(D^{(*)})$

- Heavy vector bosons
 - Constrained from $W' \rightarrow \tau v$ and $Z' \rightarrow \tau \tau$ search
- Charged Higgs
 - Constrained from $B_c \rightarrow \tau v$ and $H^{\pm} \rightarrow \tau v$, still allowed
 - Previously, it was rejected by $B_c \rightarrow \tau v$ measurement, however, recovered by recalculating the B_c lifetime. arXiv:2201.06565
- Leptoquark
 - $gg \rightarrow LQ LQ^*$, still broad parameter regions are allowed

 \bar{R}^0

LFU test program at Belle II

- The analyses presented in this talk
- $R_{\tau/l}(D^*)$ from Belle II (189 fb⁻¹), preliminary
- $R_{\tau/l}(X)$ from Belle II (189 fb⁻¹), preliminary, arXiv:2311.07248
- $R_{e/\mu}(X)$ from Belle II (189 fb⁻¹), PRL 131, 051804
- $R_{e/\mu}(D^*)$ from Belle (711 fb⁻¹), PRD 108, 012002
- Tests of LFU in angular asymmetries of $B \rightarrow D^* | \nu$ from Belle II (189 fb⁻¹), PRL 131, 181801

Belle II detector and dataset

Vertex detector (VXD)

Inner 2 layers: pixel detector (PXD) Outer 4 layers: strip sensor (SVD)

Central Drift Chamber (CDC)

He (50%), C_2H_6 (50%), small cells, long lever arm

Particle Identification

Barrel: Time-Of-Propagation counters (TOP) Forward: Aerogel RICH (ARICH)

ElectroMagnetic Calorimeter (ECL)

CsI(TI) + waveform sampling

Features:

- Near-hermetic detector

GeW

• Good at measuring neutrals, π^0 , γ , $K_{L...}$ $\sigma(E)/E \sim 2-4\%$

• Vertexing and tracking: σ vertex ~ 15µm, CDC spatial res. 100µm $\sigma(P_T)/P_T$ ~ 0.4%

Tagging methods

- The BB pairs are produced near threshold
- B tagging is necessary to measure $B \rightarrow X / D^* \tau v$, $B \rightarrow X / D^* l v$ ($\nu \ge 2$) simultaneously
- Hadronic tag
 - Fully reconstruct $B \rightarrow D^{(*)}(J/\psi/\Lambda)X$
 - Tagging efficiency 0.2~0.4%
 - less background

- Fully reconstruct one of the B mesons (B tag), possible to measure momentum of other B meson (B signal)
- Indirectly measure missing momentum of neutrinos in signal B decays
- $M^2_{miss} = (p_{beam} p_{Btag} p_{D(*)} p_{i})^2$
- E_{ECL} unassigned neutral energy in the a

other particles than a lepton as X on signal side

calorimeter
$$E_{\text{ECL}} = \sum_{i} E_{i}^{\gamma}$$

Hadronic tag reconstruction at Belle II

- Hadronic tagging reconstruction: Full Event Interpretation (FEI) trained 200 Boost Decision Tree (BDT) to reconstruct ~100 decay channels, ~10,000 B decay chains

 - • ε =0.23% for B^0

- Reconstruct $B \rightarrow D^* \tau v$ and $B \rightarrow D^* l v$ with same selections
- τ lepton reconstruct with $l(e, \mu)\nu\nu$
- D/D^* meson reconstruct with K^{\pm} , π^{\pm} , K_s , π^0
 - 8 *D*⁰ modes (Br ~36%), 4 *D*⁺ modes (Br ~12.3%)
 - $D^{*+} \rightarrow D^0 \pi^+ / D^+ \pi^0 (Br \sim 98\%), D^{*0} \rightarrow D^0 \pi^0 (Br \sim 65\%)$
- Both neutral and charged B^{\pm}/B^{0} mesons reconstruct with D^{*+}/D^{*0} and $\tau/\ell = (e, \mu)$
- $M^2_{\text{miss}} = (p_{\text{beam}} p_B_{\text{tag}} p_D(*) p_i)^2$
- EECL: extra neutral energy in the calorimeter NOT associate with signal
- Extracting $B \rightarrow D^* \tau v$, $B \rightarrow D^* l v$ yields by a two-dimensional simultaneously fit

Analysis strategy

Dominant backgrounds and control samples

B condidates	$B \rightarrow D^* \tau \nu$	$B \rightarrow D^* l \nu$	
B ⁰	2.7%	65.5%	
B ±	1.7%	34.7%	

q^2 < 3.5 GeV sideband: validate *E*_{ECL} modeling

$m(D\pi)$ - $m(D^*)$ sideband: validate fake *D** modeling

100

80

- Similarly sensitivity as Belle 15' result @ with only 189 fb⁻¹
- Belle II first preliminary result for R(D*) $R(D^*) = 0.267 \stackrel{+0.041}{_{-0.039}}(\text{stat}) \stackrel{+0.028}{_{-0.033}}(\text{sys})$
- Consistent with SM: 0.254 ± 0.005 , HFLAV23: 0.284 ± 0.013
- SM vs. experimental average deviation: $3.2\sigma \rightarrow 3.3\sigma$

$R_{\tau/l}(D^*)$ results

711 fb ⁻¹	Source	Uncertaint
	Statistical uncertainty	+15.4% -14.6%
	EECL PDF shape	+5.5% -9.3%
	MC statistics	±7.0%
	$B \rightarrow D^{**lv}$ modeling	+4.7% -2.7%

LFU test by $R_{\tau/l}(X)$ measurement

- Breakdown of $B \rightarrow X/v$ branching fractions
 - ~ 2/3 overlap with *D* and *D**
 - ~ 3/4 D decay to $v, K_L^0, n\pi \dots$
 - ~ 1/3 contribution from D^{**} and nonresonant X_c
- Multiple LEP experiments measured $Br(B \rightarrow X\tau v)$
 - Br($B \rightarrow X \tau v$) are completely saturated by D/D^* BFs \Rightarrow An update measurement is needed
- R(X) is critical cross-check of R(D^(*)), largest contribution from R(D^(*)), a partially complementary test of LFU

$$R(X_{\tau/\ell}) = \frac{Br(\bar{B} \to X\tau^- \bar{\nu}_{\tau})}{Br(\bar{B} \to X\ell^- \bar{\nu}_{\ell})}$$

• R(X) has never been measured

Update the modeling for $R_{\tau/\ell}(X)$ measurement

- Approach employed at Belle II: M_X reweighting
 - Events weights from data/MC ratio in M_X distribution, applied to all events
 - q^2 , M^2_{miss} can be expressed by reliable parts and M_X part
- Detailed adjustments to MC (FFs, *B* and *D* BFs)
- Signal yields are extracted by a binned maximum-likelihood simultaneous fit to lepton momentum at different M²_{miss} bins

- Main systematics
 - Adjustment to MC (form factor, D and B branching factions)
 - Sample size in sideband for reweighting
- First Belle II preliminary $R_{\tau/\ell}(X)$ result

 $R_{\tau/\ell}(X) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$

 $R_{\tau/e}(X) = 0.232 \pm 0.020 \text{ (stat)} \pm 0.037 \text{ (syst)}$ $R_{\tau/\mu}(X) = 0.222 \pm 0.027 \text{ (stat)} \pm 0.050 \text{ (syst)}$

 Consistent with rough SM expectation $R_{\tau/l}(X)_{\rm SM} \approx 0.222$

 $R_{e/\mu}(X)$ and $R_{e/\mu}(D^*)$

Light-lepton universality test

- First $R(X_{e/\mu})$ measurement $R(X_{e/\mu}) = 1.007 \pm 0.009 \text{ (stat)} \pm 0.019 \text{ (syst)}$
- Most precise BF based LFU test of $e-\mu$ universality with semileptonic *B* decays to date
- Consistent with SM value by 1.2σ $R(X_{e/\mu})_{\text{SM}} = 1.006 \pm 0.001$ JHEP 11 (2022) 007
- Compatible with exclusive Belle (711 fb⁻¹) measurements PRD 100, 052007 (2019)

 $R(D_{e/\mu}^{*}) = 1.01 \pm 0.01$ (stat) ± 0.03 (syst) $R(D_{e/\mu}^{*}) = 0.993 \pm 0.023$ (stat) ± 0.023 (syst) PRD 108, 012002

PRL 131, 051804 Signal channel $(B^0B^{\overline{0}}/B^+B^-)$

LFU tests in $B \rightarrow D^* lv$ angular asymmetries

LFU tests in $B \rightarrow D^* lv$ angular asymmetries

- Measure angular asymmetries separately for D^*ev and $D^*\mu v$ final states; their differences are sensitive to LFU violation
- Belle II measures A_{FB}, S₃, S₅, S₇, S₉ (defined in <u>PRD 107,015011</u>) as a function of w, with $x = \cos\theta_l$ for $A_x(w)$, other choices for S_3-S_9

$$\mathcal{A}_{x}(w) \equiv \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}w}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0}\right] \mathrm{d}x \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}w\mathrm{d}x} \quad \mathcal{A}_{x}(w) = \frac{N_{x}^{+}(w) - N_{x}^{-}(w)}{N_{x}^{+}(w) + N_{x}^{-}(w)}$$

lifterences are expected to be small in SM

- The d $\Delta \mathcal{A}_{x}(w) \equiv \mathcal{A}_{x}^{\mu}(w) - \mathcal{A}_{x}^{e}(w)$
- All asymmetry consistent with SM, the measurements are statistics limited

$$w \equiv \frac{m_{B^0}^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$$

Expected sensitivity of LFU test at Belle II

The Belle II Physics Book, PTEP 2019, 123C01

arXiv:2207.06307

Summary and prospects

- $R(D^{(*)})$ shows 3.3 σ deviation between experimental average value and standard model prediction
 - Hint of Lepton Flavor Universality Violation
- Belle II performed new tests of LFU based on 189 fb⁻¹ data $R_{\tau/l}(D^*) = 0.267 + 0.041 - 0.039$ (stat) + 0.028 - 0.033 (syst)
 - $R_{\tau/l}(X) = 0.228 \pm 0.016 \text{ (stat)} \pm 0.036 \text{ (syst)}$
 - $R_{e/\mu}(X) = 1.007 \pm 0.009$ (stat) ± 0.019 (syst)
 - and Belle 711 fb⁻¹ data

- $R_{e/\mu}(D^*) = 0.993 \pm 0.023 \text{ (stat)} \pm 0.023 \text{ (syst)}$ Angular asymmetry differences ΔAx also measured, statistics limited
- SuperKEKB/Belle II will resume operation at the beginning of 2024

Peak Lumino

Backup

 $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\rm hel}} = \frac{3}{4} (2F_L^{D^*}\cos^2\theta_{\rm hel} + (1 - F_L^{D^*})\sin^2\theta_{\rm hel})$

$$F_L^{D^*} = \frac{\Gamma(D_L^*)}{\Gamma(D_L^*) + \Gamma(D_T^*)}$$

- Belle measured the D^{*-} polarization in the decay of $B \rightarrow D^* \tau v$, with inclusive tagging based on full Belle data-set (772 M BBbar)
- Result only published on arXiv, NOT to a journal paper

 $F_L^{D^*} = 0.60 \pm 0.08 (\text{stat}) \pm 0.04 (\text{sys})$

- Belle II 363 fb-1 data, will have sensitivity for measurement of $F_L^{D^*}$
- Low momentum of charged pion efficiency on forward and backward side is a challenge point.

Measurement of $R_D^{(*)}(q^2)$

$$R_{D^*}(q^2) \equiv \frac{d\mathcal{B}(\bar{B} \to D^*\tau\bar{\nu})/dq^2}{d\mathcal{B}(\bar{B} \to D^*\ell\bar{\nu})/dq^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^{-2}$$

- q² specific systematic analysis
 - Cancel the uncertainties both from experimental and theoretical side.
- Has not been measured yet
- Already have sensitivity to rejecting some of the NP, with 363 fb⁻¹

PHYSICAL REVIEW D 91, 114028 (2015)

