Recent γ/ϕ_3 measurement @ Belle II

师晓东 KEK, IPNS Includes JHEP 09 2023, 146, JHEP 02 2022, 063, arXiv: 2308.05048, and one preliminary result.

2023.12.15-18 全国第二十届重味物理和CP破坏研讨会

CKM matrix and the unitary triangle

- CKM matrix connects *u* and *d*-type quarks via weak force.
- In SM, CKM matrix is unitary: four free parameter, one of them is the complex phase, the only one source of CPV in quark sector in SM!

•
$$\phi_1 = \beta = \arg(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}), (22.2 \pm 0.7)^\circ$$

• $\phi_2 = \alpha = \arg(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}), (85.2^{+4.8}_{-4.3})^\circ$
• $\phi_3 = \gamma = \arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}), (66.2^{+3.4}_{-3.6})^\circ$
HFLAV

How to measure ϕ_3 : interference in $B^- \rightarrow DK^-$

- Depends on the D decay final states, different methods:
 - **BPGGSZ**: self conjugated multi-body decays, e.g. $K_S^0 \pi^+ \pi^-, K_S^0 \pi^+ \pi^- \pi^0, \pi^+ \pi^- \pi^+ \pi^-$
 - **GLW**: CP eigenstates, e.g. $K_S^0 \pi^0, K^+ K^-$
 - **ADS**: CF and DCS decays, e.g. $K^-\pi^+, K^-\pi^+\pi^0, K^-\pi^+\pi^\pm\pi^\mp$
 - **GLS**: SCS decays, e.g. $K_S^0 K^{\mp} \pi^{\pm}$

- Need inputs from charm experiments, e.g. strongphase difference.
 - CLEO-c and BESIII provides model-independent external inputs.(Significant contribution!)

Prospect on ϕ_3

- Theoretically **clean**, non-tree SM contribute $\sim 10^{-7}$ [arXiv:<u>1308.5663]</u>
- Current W.A.: $\phi_3 = (66.2^{+3.4}_{-3.6})^{\circ}$ [HFLAV], statistically uncertainty dominated.
- More B data in the next decades
 - LHCb expect 1.5° by end of Run 3 (~ 22 fb⁻¹), <1° by end of Run 4 (~ 50 fb⁻¹), ~ 0.4° in Phase II upgrade (~ 300 fb⁻¹). [arXiv:1709.10308, CERN-LHCC-2017-003]
 - Belle II expect 1.5° with 50 ab^{-1} [2020 snowmass].
- —> In the future (10 years?), ϕ_3 can be a "**candle**" of SM.

n	1
3.	5°

Belle II run I data sets (2019-2022)

- 362/fb at Y(4S) (goal: 50/ab)
- The results in this talk
 - **BPGGSZ** using 128/fb Belle II data \bullet
 - **GLW** using 189/fb Belle II data
 - **GLS** using 362/fb Belle II data sets [* and 711/fb Belle data sets for all three
 - **Combination** of results from Belle \bullet and Belle II

Similar analysis flow

• e^+e^- collide at $\Upsilon(4S)$, just above $B\overline{B}$ threshold: low background and well-known knowledge of initial state

• Use event shape to identify continuum background (qqbar).

Signal Continuum

Extract signal on ΔE and BDT output.

BPGGSZ results $B^+ \rightarrow Dh^+, D \rightarrow K_S^0 h^+ h^-, h = \pi, K$

 $\mathbf{x}_{+}^{\mathrm{DK}} = \mathbf{r}_{\mathrm{B}}^{\mathrm{DK}} \cos(\delta_{\mathrm{B}}^{\mathrm{DK}} \pm \phi_{3})$ $\mathbf{y}_{+}^{\mathrm{DK}} = \mathbf{r}_{\mathrm{B}}^{\mathrm{DK}} \sin(\delta_{\mathrm{B}}^{\mathrm{DK}} \pm \phi_{3})$

- Fit on yields in different bins, extract x_+, y_+, F_i .
- The c_i, s_i are cited from BESIII results [Phys.Rev.D 101] (2020) 11, 112002, Phys.Rev.D, 102 (2020) 5, 052008]

arXiv:2308.05048, submitted to JHEP

Preliminary

$$\begin{aligned} R_{CP\pm} &= \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D^0K^-) + \mathcal{B}(B^+ \to \bar{D}^0K^+)}, \\ &= 1 + r_B^2 + 2\eta_{CP}r_B\cos(\delta_B)\cos(\phi_3), \\ A_{CP\pm} &= \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) - \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}, \\ &= 2\eta_{CP}r_B\sin(\delta_B)\sin(\phi_3)/R_{CP\pm}. \end{aligned}$$

GLS results $B^+ \to Dh^+, D \to K^0_S K^+ \pi^\pm$

 $B^{\pm} \to DK^{\pm}, D\pi^{\pm}$ with $D \to K_{S}^{0} K^{\pm} \pi^{\mp}$: SS: same-sign, OS: opposite sign.

Two sets of results: in full D phase space and in the K*K region (expected large δ_D).

Observe 4 Acp and 3 BR ratios.

$$\begin{split} A_{SS}^{DK} &= \frac{2r_B^{DK}r_D\kappa_D\sin(\delta_B^{DK} - \delta_D)\sin\phi_3}{1 + (r_B^{DK})^2r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} - \delta_D)\cos\phi_3}, \\ A_{OS}^{DK} &= \frac{2r_B^{DK}r_D\kappa_D\sin(\delta_B^{DK} + \delta_D)\sin\phi_3}{(r_B^{DK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} + \delta_D)\cos\phi_3}, \\ A_{SS}^{D\pi} &= \frac{2r_B^{D\pi}r_D\kappa_D\sin(\delta_B^{D\pi} - \delta_D)\sin\phi_3}{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ A_{OS}^{D\pi} &= \frac{2r_B^{D\pi}r_D\kappa_D\sin(\delta_B^{D\pi} + \delta_D)\sin\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}. \\ R_{SS}^{DK/D\pi} &= R\frac{1 + (r_B^{DK})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{1 + (r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ R_{OS}^{DK/D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} + \delta_D)\cos\phi_3}, \\ R_{OS}^{DK/D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}, \\ R_{SS/OS}^{DK/D\pi} &= \frac{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}, \\ R_{SS/OS}^{D\pi} &= \frac{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} + \delta_D)\cos\phi_3}. \end{split}$$

362 fb-1 Belle II +711 fb-1 Belle In K*K region:

 $A_{\rm SS}^{DK} = 0.055 \pm 0.119 \pm 0.020,$ $A_{\rm OS}^{DK} = 0.231 \pm 0.184 \pm 0.014,$ $A_{\rm SS}^{D\pi} = 0.046 \pm 0.029 \pm 0.016, \quad \overset{\widehat{\mathbb{C}}_{150}}{\overset{1}{\underbrace{}_{5}}_{\underbrace{}_{5}}}$ $A_{\rm OS}^{D\pi} = 0.009 \pm 0.046 \pm 0.009,$ $R_{\rm SS}^{DK/D\pi} = 0.093 \pm 0.012 \pm 0.005,$ $R_{\rm OS}^{DK/D\pi} = 0.103 \pm 0.020 \pm 0.006,$

 $R_{\rm SS/OS}^{D\pi} = 2.412 \pm 0.132 \pm 0.019,$

JHEP 09 2023,146

- CLEO-c.[arXiv:<u>1203.3804]</u>
- Hope BESIII update this!

Combination of ϕ_3 using results from Belle and Belle II

- Combine four different methods, 17 different final states.
- Tool: <u>GammaCombo</u>, a dedicated tool for combination by LHCb.

B decay	D decay	Method	Data set
v	v		$(Belle + Belle II)[fb^{-1}]$
$B^+ \to Dh^+$	$D \rightarrow K^0_{ m s} h^- h^+$	BPGGSZ	711 + 128 [JHEP 02 063 (2022)]
$B^+ \to Dh^+$	$D ightarrow K_{ m s}^0 \pi^- \pi^+ \pi^0$	BPGGSZ	711 + 0 [JHEP 10 178 (2019)]
$B^+ \to Dh^+$	$D ightarrow K_{ m S}^0 \pi^0, K^- K^+$	GLW	711 + 189 [arxiv:2308.05048]
$B^+ \to Dh^+$	$D \to K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0 [PRL 106 231803 (2011)]
$B^+ \to Dh^+$	$D ightarrow K_{ m s}^0 K^- \pi^+$	GLS	711 + 362 [arxiv:2306.02940]
$B^+ \to D^* K^+$	$D \rightarrow K_{ m s}^0 \pi^- \pi^+$	BPGGSZ	605 + 0 [PRD 81 112002 (2010)]
$B^+ \rightarrow D^* K^+$	$\begin{split} D &\to K^0_{\rm S} \pi^0, K^0_{\rm S} \phi, K^0_{\rm S} \omega, \\ K^- K^+, \pi^- \pi^+ \end{split}$	GLW	210+0 [PRD 73 051106 (2006)]

• $B^0 \rightarrow D^{(*)}h^{(*)}$ results are not used: negligible contribution and extra parameters introduced.

Preliminary

External inputs to ϕ_3 combination

- External inputs: mainly from CLEO and BESIII.
- Looking forward to more precise and valuable results from BESIII.

Preliminary

Observable	Value	Source	-
$R_D^{K\pi}$	$(3.44 \pm 0.02) \times 10^{-3}$	HELAV	- Ibflay wob corp.cb
$\delta_D^{K\pi}$	$(191.7 \pm 3.7)^{\circ}$	IIF LAV	[IIIIav.web.cem.cl
$r_D^{K\pi} \cos(\delta_D^{K\pi})$	-0.0562 ± 0.0081	BESIII	[ED IC 92 1000 (2)
$r_D^{K\pi} \sin(\delta_D^{K\pi})$	-0.011 ± 0.012	DESIII	[EFJC 02, 1009 (20
$r_D^{K\pi\pi^0}$	0.0447 ± 0.0012		
$\kappa_D^{K\pi\pi^0}$	0.81 ± 0.06	CLEO + LHCb	[PLB 765 (2017)]
$\delta_D^{K\pi\pi^0}$	$(198 \pm 15)^{\circ}$		
$r_D^{K\pi\pi^0}$	0.0440 ± 0.0011		
$\kappa_D^{K\pi\pi^0}$	0.78 ± 0.04	BESIII	[JHEP 05, 164 (20
$\delta_D^{K\pi\pi^0}$	$(196 \pm 15)^{\circ}$		
$(r_D^{K_S^0 K \pi})^2$	0.356 ± 0.034		
$\kappa_D^{K_S^0 K \pi}$	0.94 ± 0.12	CLEO	[PRD 85, 092016 (2
$\delta_D^{K_S^0K\pi}$	$(-16.6 \pm 18.4)^{\circ}$		
$(r_D^{K_S^0 K \pi})^2$	0.370 ± 0.003	LHCb	[PRD 93, 052018 (2
R_{GLS}	$0.0789 {\pm} 0.0027$	PDG	

Results: 1D scans

Discuss	ion ab	out ϕ_3	combir	nation			Proli	
p-value (PLU	GIN): 75%	combini	ng inputs fr	$\mathbf{rom} \ \mathbf{B}^+ \rightarrow \mathbf{D}^{(*)} \mathbf{h}^+$	decays: ϕ_3	= (78.6 ± 7. 3	3)° (* reim	inar
Parameters	$\phi_3(^\circ)$	r_B^{DK}	$\delta_B^{DK}(^\circ)$	$r_B^{D\pi}$	$\delta^{D\pi}_B(^\circ)$	$r_B^{D^*K}$	$\delta_B^{D^*K}(^\circ)$	
Plugin method								
Best fit value	78.6	0.117	138.4	0.0165	347.0	0.234	341	
68.3% interval	[71.4, 85.4]	[0.105, 0.130]	[129.1, 146.5]	[0.0109, 0.0220]	[337.4, 355.7]	[0.165, 0.303]	[327, 355]	
95.5% interval	[63, 92]	[0.092, 0.141]	[118, 154]	[0.006, 0.027]	[322, 366]	[0.10, 0.37]	[307, 369]	
				*	^			

Comparing to W.A.: [HFLAV] $\phi_3 = (65.9^{+3.3}_{-3.5})^\circ$ $r_B(DK^-) = (0.0994 \pm 0.0026)$ $\delta_B(DK^-) = (127.7^{+3.6}_{-3.9})^\circ$ $r_B(D\pi^-) = (0.0049 \pm 0.0006)$ $\delta_B(D\pi^-) = (294^{+9.7}_{-11})^{\circ}$

• Large ϕ_3 , but consistent with w.a. in 2 σ

Discussion about ϕ_3 combination							Proli	
p-value (PLU	GIN): 75%	combini	n <mark>g inputs f</mark> r	rom B ⁺ → D ^(*) h ⁺	decays: ϕ_3	= (78.6 ± 7. 3	3)° ^{(*} 'enm	inary
Parameters	$\phi_3(^\circ)$	r_B^{DK}	$\delta_B^{DK}(^\circ)$	$r_B^{D\pi}$	$\delta^{D\pi}_B(^\circ)$	$r_B^{D^*K}$	$\delta_B^{D^*K}(^\circ)$	
Plugin method								
Best fit value	78.6	0.117	138.4	0.0165	347.0	0.234	341	
68.3% interval	[71.4, 85.4]	[0.105, 0.130]	[129.1, 146.5]	[0.0109, 0.0220]	[337.4, 355.7]	[0.165, 0.303]	[327, 355]	
95.5% interval	[63, 92]	[0.092,0.141]	[118, 154]	[0.006, 0.027]	[322, 366]	[0.10, 0.37]	[307, 369]	

Comparing to W.A.: [HFLAV]

$$\phi_3 = (65.9^{+3.3}_{-3.5})^{\circ}$$

 $r_B(DK^-) = (0.0994 \pm 0.0026)$ • Larg
 $\delta_B(DK^-) = (127.7^{+3.6}_{-3.9})^{\circ}$ • Larg
 $r_B(D\pi^-) = (0.0049 \pm 0.0006)$
 $\delta_B(D\pi^-) = (294^{+9.7}_{-11})^{\circ}$

ge ϕ_3 , but consistent with w.a. in 2 σ

ge r_B , so if future Belle II's data favor the small w.a. r_B , ϕ_3 's precision will be worse a bit.

ion ab	out ϕ_3	combir	nation			Proli	
GIN): 75%	combini	n <mark>g inputs f</mark> r	$\mathbf{rom} \ \mathbf{B}^+ \rightarrow \mathbf{D}^{(*)} \mathbf{h}^+$	decays: ϕ_3	= (78.6 ± 7. 3	3)° ^{(*} 'enn	ninary
$\phi_3(^\circ)$	r_B^{DK}	$\delta_B^{DK}(^\circ)$	$r_B^{D\pi}$	$\delta^{D\pi}_B(^\circ)$	$r_B^{D^*K}$	$\delta_B^{D^*K}(^\circ)$	
Plugin method							
78.6	0.117	138.4	0.0165	347.0	0.234	341	
[71.4, 85.4]	[0.105, 0.130]	[129.1, 146.5]	[0.0109, 0.0220]	[337.4, 355.7]	[0.165, 0.303]	[327, 355]	
[63, 92]	[0.092, 0.141]	[118, 154]	[0.006, 0.027]	[322, 366]	[0.10, 0.37]	[307, 369]	
	5 ion ab 5 GIN): 75% $\phi_3(^\circ)$ 78.6 [71.4, 85.4] [63, 92]	ION about ϕ_3 IGIN): 75% combining $\phi_3(^\circ)$ r_B^{DK} 78.6 0.117 [71.4, 85.4] [0.105, 0.130] [63, 92] [0.092, 0.141]	Sion about ϕ_3 combining inputs for $\phi_3(^\circ)$ combining inputs for $\phi_3(^\circ)$ $VGIN$: 75% combining inputs for $\phi_3(^\circ)$ $\phi_3(^\circ)$ r_B^{DK} $\phi_3(^\circ)$ r_B^{DK} $\gamma_{8.6}$ 0.117 78.6 0.117 78.6 0.117 138.4 [71.4, 85.4] [0.105, 0.130] [129.1, 146.5] [63, 92] [0.092, 0.141]	Sion about ϕ_3 combinationVGIN): 75%B^+ \rightarrow D^{(*)}h^+ $\phi_3(^\circ)$ r_B^{DK} $\delta_B^{DK}(^\circ)$ $r_B^{D\pi}$ PLUGIN method78.60.117138.40.0165[71.4, 85.4][0.105, 0.130][129.1, 146.5][0.0109, 0.0220][63, 92][0.092, 0.141][118, 154][0.006, 0.027]	Sion about ϕ_3 combinationUGIN): 75%combining inputs from $B^+ \rightarrow D^{(*)}h^+$ decays: $\phi_3 \in \phi_3(^\circ)$ $\phi_3(^\circ)$ r_B^{DK} $\delta_B^{DK}(^\circ)$ $r_B^{D\pi}$ $\phi_3(^\circ)$ r_B^{DK} $\delta_B^{DK}(^\circ)$ $r_B^{D\pi}$ PLUGIN method78.60.117138.40.0165347.0[71.4, 85.4][0.105, 0.130][129.1, 146.5][0.0109, 0.0220][337.4, 355.7][63, 92][0.092, 0.141][118, 154][0.006, 0.027][322, 366]	Sion about ϕ_3 combinationUGIN): 75%combining inputs from B ⁺ \rightarrow D ^(*) h ⁺ decays: $\phi_3 = (78.6 \pm 7.3)$ $\phi_3(^{\circ})$ r_B^{DK} $\delta_B^{DK}(^{\circ})$ $r_B^{D\pi}$ $\delta_B^{D\pi}(^{\circ})$ $r_B^{D^*K}$ PLUGIN method78.60.117138.40.0165347.00.234[71.4, 85.4][0.105, 0.130][129.1, 146.5][0.0109, 0.0220][337.4, 355.7][0.165, 0.303][63, 92][0.092, 0.141][118, 154][0.006, 0.027][322, 366][0.10, 0.37]	Sion about ϕ_3 combinationVGIN): 75%combining inputs from $B^+ \rightarrow D^{(*)}h^+$ decays: $\phi_3 = (78.6 \pm 7.3)^\circ$ $\phi_3(^\circ)$ r_B^{DK} $\delta_B^{DK}(^\circ)$ $r_B^{D\pi}$ $\delta_B^{D\pi}(^\circ)$ $r_B^{P^*K}$ $\delta_B^{D^*K}(^\circ)$ PLUGIN method78.60.117138.40.0165347.00.234341[71.4, 85.4][0.105, 0.130][129.1, 146.5][0.0109, 0.0220][337.4, 355.7][0.165, 0.303][327, 355][63, 92][0.092, 0.141][118, 154][0.006, 0.027][322, 366][0.10, 0.37][307, 369]

Comparing to W.A.: [HFLAV] $\phi_3 = (65.9^{+3.3}_{-3.5})^{\circ}$ • Large ϕ_3 , but consistent with w.a. in 2 σ $r_B(DK^-) = (0.0994 \pm 0.0026)$ • Large r_{R} , so if future Belle II's data favor the w.a. r_{R} , the ϕ_3 's precision will be worse a bit with same data size. $\delta_B(DK^-) = (127.7^{+3.6}_{-3.9})^{\circ}$ • $(\delta_B(D\pi) + \delta_D) \sim 180^\circ$, $\cos(\delta_B(D\pi) + \delta_D)$'s uncertainty $r_B(D\pi^-) = (0.0049 \pm 0.0006)$ is much smaller than expected -> **unexpected precision** $\delta_B(D\pi^-) = (294^{+9.7}_{-11})^{\circ}$ from ADS method. Not true anymore with w.a. $\delta_B(D\pi)$.

$R_{ADS} = r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\phi_3)$

Determine hadronic parameter r_R^{DK} **independently?**

Now in all methods, we determine r_{R}^{DK} , δ_{R}^{DK} , ϕ_{3} simultaneously. The ϕ_3 's precision highly depends on value of r_R^{DK} . Can we determine r_R^{DK} solo? Will be an important extra constrain on ϕ_3 !

Experimentally: $N(B^+ \rightarrow D^0 K^+, D^0 \rightarrow K^- e^+ \nu_{\rho})/N(B^+ \rightarrow \bar{D}^0 K^+, \bar{D}^0 \rightarrow K^+ e^- \bar{\nu}_{\rho}),$ Rough estimation: for CF channel: N(raw)/1 ab^{-1} ~ 6500

- If use hadronic tag (FEI): eff ~ 0.2%? N(CF) ~600 at 50 ab^{-1}
- Untag? Fit $\cos\theta_{RY}$, like semi-leptonic study. Maybe more difficult, due to small $p(\nu_{\rho})$. N(CF) ~60000 at 50 ab^{-1} , 4% precision? Won't be useful.

More idea? Or constrain from theory? We don't like model-dependent uncertainties...

Belle II preliminary

Even 3000

2000

1000

Summary

PXD complete (2 layers) to be installed during **LS1** (2022-2023) (+beampipe + TOP PMTs) **run 2** (\rightarrow 2027): integrated luminosity 5-10 ab⁻¹, 2×10³⁵/cm²/s

2027: collider upgrade $(QCS+RF) \rightarrow$ installation upgraded detector **run 3** (→ 2035): 50 ab⁻¹

lacksquare

- BPGGSZ, GLW, GLS results using Belle + Belle II data.
- First ϕ_3 combination from Belle + Belle II : $(78.6 \pm 7.3)^{\circ}$.
- On the way to 1 degree (or less) uncertainty on ϕ_3 .
 - BESIII's precise D results will be highly appreciated. Will be helpful if BESIII also measure the $Br(D^0 \to K^- \pi^+ \pi^0)/Br(D^0 \to K^- \pi^+),$ dominant uncertainty in π^0 systematic uncertainty in Belle II.

Thank you!

A²
$$\lambda^{4}$$

 $A^{\lambda^{3}}(\rho - i\eta + \frac{i}{2}\eta\lambda^{2})$
 $A^{2}\lambda^{4}$
 $A^{\lambda^{2}}(1 + i\eta\lambda^{2})$
 $\lambda^{2}(1 + i\eta\lambda^{2})$

Results: 2D scans

