

Deciphering the Long-distance Penguin contribution to $B \to \gamma \gamma$ decays

Qin Qin (秦溱)

HUST (华中科技大学)

QQ, Y.-L. Shen, C. Wang, Y.-M. Wang, *Phys.Rev.Lett.* 131(2023)091902

The 20th Workshop of Heavy Flavor Physics and CP Violation Shanghai, 15-18 July 2023

Contents

- Why $\bar{B} \rightarrow \gamma \gamma$?
- History of (1) $\bar{B} \rightarrow \gamma \gamma$ and (2) the long-distance penguin contribution
- ${\scriptstyle \bullet}$ Factorization of the long-distance penguin contribution — — a novel B-meson distribution amplitude
- Numerics
- Summary and Prospects

B decays are important!

Why $\bar{B} \rightarrow \gamma \gamma$?

- FCNC: Sensitive to <u>dynamics beyond the SM</u>, e.g. <u>CP violation</u>
- Simplest decay (as $B \rightarrow \mu^+ \mu^-$): to address the intricate strong

interaction mechanism of the heavy-meson systems

--- structure of the B meson

Why $\bar{B} \rightarrow \gamma \gamma$?

- Sensitive to <u>dynamics beyond the SM</u> (FCNC), e.g. <u>CP violation</u>
- Simplest decay (as $B \rightarrow \mu^+ \mu^-$) to address the intricate strong

interaction mechanism of the heavy-meson systems

— <u>structure of the B meson</u>

	Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
	$Br(B_d \to \gamma \gamma)$	< 740%	30%	9.6%
Belle II	$A_{CP}(B_d \to \gamma \gamma)$	_	78%	25%
	$\operatorname{Br}(B_s \to \gamma \gamma)$	< 250%	23%	—
Physics Book				

$$\mathcal{BR}(B_d \to \gamma \gamma) = (1.352^{+1.242}_{-0.745}) \times 10^{-8}, \qquad \mathcal{BR}(B_s \to \gamma \gamma) = (2.964^{+1.800}_{-1.614}) \times 10^{-7}$$

[Y.-L. Shen, Y.-M. Wang, Y.-B. Wei, 2009.02723]

CEPC will have a better performance.

History of $\bar{B} \rightarrow \gamma \gamma$

 \circ LO + NLO

$$\bar{A}(\bar{B}_{q} \to \gamma\gamma) = -\frac{4 G_{F}}{\sqrt{2}} \frac{\alpha_{\rm em}}{4\pi} e^{*\alpha}(p) e^{*\beta}(q) \times \sum_{p=u,c} V_{pb} V_{pq}^{*} \sum_{i=1}^{8} C_{i} T_{i,\alpha\beta}^{(p)}, \qquad \underline{\text{Leading power}}$$

$$T_{i,\alpha\beta}^{(p)} = i m_{B_{q}}^{3} \left[\left(g_{\alpha\beta}^{\perp} - i \varepsilon_{\alpha\beta}^{\perp} \right) F_{i,L}^{(p)} - \left(g_{\alpha\beta}^{\perp} + i \varepsilon_{\alpha\beta}^{\perp} \right) F_{i,R}^{(p)} \right], \qquad F_{L}^{\text{LP}} \propto m_{b} \int_{0}^{\infty} \frac{d\omega}{\omega} \phi_{B}^{+}(\omega,\mu) \propto \frac{m_{b}}{\lambda_{b}}$$

$$\underline{\text{Two polarizations}}$$

[Bosch, Buchalla, hep-ph/0208202; Descotes-Genon, Sacharajda, hep-ph/0212162]

NLL corrections + Systematic power corrections

both ~ O(10%) [Y.-L. Shen, Y.-M. Wang, Y.-B. Wei, 2009.02723]

b

s/d

 \mathbf{Q}_7

 One important but tough piece missing — — long-distance penguin contribution 00000

6

History of Long-distance penguin contribution

In inclusive $b \rightarrow s$ decays

- Realized in $\overline{B} \to X_s \gamma$, expansion of $(\Lambda_{\text{QCD}}^2/m_c^2)(m_b \Lambda_{\text{QCD}}/m_c^2)^n$ [Voloshin, '96; Ligeti, Randall, Wise, '97; Buchalla, Isidori, Rey, '97] γ^*
- Factorization in $\bar{B} \rightarrow X_s \gamma$ using SCET, $m_c^2 \sim m_b \Lambda_{\rm QCD}$ [Benzke, Lee, Neubert, Paz, 1003.5012]
- Factorization in $\overline{B} \rightarrow X_s \ell \ell$ [Benzke, Hurth, Turczyk, 1705.10366]
- Phenomenological Application in $\overline{B} \rightarrow X_{d,s} \ell \ell$ [Huber, Hurth, Enrico, Jenkins, **QQ**, Vos,1908.07507, 2007.04191]

In exclusive $b \rightarrow s$ decays

- Initiated in $B \to K^* \gamma$ [Khodjamirian, Ruckl, Stoll, Wyler, '97]
- Developed in $B \rightarrow K^* \ell \ell$ [Khodjamirian, Mannel, Pivorarov, Wang, 1006.4945]

Soft gluon from charm-loop

manufuereee

History of Long-distance penguin contribution

[LHCb, 2003.04831]

$$\mathcal{H}_{\text{eff}} = \frac{4 G_F}{\sqrt{2}} \sum_{p=u,c} V_{pb} V_{pq}^* \left[C_1(\nu) P_1^p(\nu) + C_2(\nu) P_2^p(\nu) + \sum_{i=3}^8 C_i(\nu) P_i(\nu) + \sum_{i=3}^8 C_i(\nu) P_i(\nu) \right] + \text{h.c.},$$

$$P_{1}^{p} = (\bar{q}_{L}\gamma_{\mu}T^{a}p_{L}) (\bar{p}_{L}\gamma^{\mu}T^{a}b_{L}), \qquad P_{2}^{p} = (\bar{q}_{L}\gamma_{\mu}p_{L}) (\bar{p}_{L}\gamma^{\mu}b_{L}),$$

$$P_{3} = (\bar{q}_{L}\gamma_{\mu}b_{L}) \sum_{q'} (\bar{q}'\gamma^{\mu}q'), \qquad P_{4} = (\bar{q}_{L}\gamma_{\mu}T^{a}b_{L}) \sum_{q'} (\bar{q}'\gamma^{\mu}T^{a}q'),$$

$$P_{5} = (\bar{q}_{L}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}b_{L}) \sum_{q'} (\bar{q}'\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}q'),$$

$$P_{6} = (\bar{q}_{L}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}T^{a}b_{L}) \sum_{q'} (\bar{q}'\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}T^{a}q'),$$

Integrate out the hard and hard-collinear d.o.f.

M = H * J * S $(m_b \gg m_c \sim \mathcal{O}(\sqrt{\Lambda m_b}) \gg \Lambda_{\text{QCD}})$

First-step match:

- The hard-kernel (jet functions) depends on <u>2 different light-cone</u>
 <u>components</u> of the gluon and light quark momenta.
- It becomes evident to introduce the <u>3-particle</u> B-meson distribution amplitude with <u>2 light-cone directions</u>.

$$H \star J \star \bar{J} \star \Phi_{\rm G}$$

The explicit factorization formula:

$$\sum_{i=1}^{8} C_i F_{i,L}^{(p), \text{ soft } 4q} = -\frac{Q_q f_{B_q}}{m_{B_q}} \left(\int_{-\infty}^{+\infty} \frac{d\omega_1}{\omega_1} \int_{-\infty}^{+\infty} \frac{d\omega_2}{\omega_2} \left(C_2 - \frac{C_1}{2N_c} \right) Q_p \left(F(-\frac{m_p^2}{m_b\omega_2}) - 1 \right] \times \Phi_{G}(\omega_1, \omega_2, \mu)$$

The light quark momentum component $\omega_1 = n \cdot k$; The soft gluon momentum component $\omega_2 = \bar{n} \cdot l$.

The novel B-meson DA:

$$\langle 0 | \bar{q}_{s}(\tau_{1}n)(g_{s}G_{\mu\nu})(\tau_{2}\bar{n})\bar{n}^{\nu} h\gamma_{\perp}^{\mu}\gamma_{5}h_{\nu}(0) | \bar{B}_{\nu} \rangle$$

$$= 2\tilde{f}_{B}(\mu)m_{B}\int_{-\infty}^{+\infty}d\omega_{1}\int_{-\infty}^{+\infty}d\omega_{2}\exp\left[-i(\omega_{1}\tau_{1}+\omega_{2}\tau_{2})\right]\Phi_{G}(\omega_{1},\omega_{2},\mu)$$

The quark and gluon fields are localized on <u>2 distinct light-cone directions</u>.

Non-trivial RG evolution of this soft function, mixing positive into negative support of $\omega_{1,2}$. See an upcoming paper [Huang, Ji, Shen, Wang, Wang, Zhao, 2023].

The (tree-level) normalization conditions of Φ_G :

Matching the conventional 3-particle B meson DAs as τ_1 or $\tau_2 \to 0$. $\langle 0 | \bar{q}(z_1)(g_s G_{\mu\nu})(z_2) \bar{n}^{\nu} \hbar \gamma^{\mu}_{\perp} \gamma_5 h_{\nu}(0) | \bar{B}_{\nu} \rangle = 2 \tilde{f}_B(\mu) \Phi_4(z_1, z_2, \mu)$ Twist 4 $\langle 0 | \bar{q}(z_1)(g_s G_{\mu\nu})(z_2) n^{\nu} \hbar \gamma^{\mu}_{\perp} \gamma_5 h_{\nu}(0) | \bar{B}_{\nu} \rangle = 2 \tilde{f}_B(\mu) \Phi_5(z_1, z_2, \mu)$ Twist 5

[Braun, Ji, Manashov, 1703.02446]

$$\begin{split} &\int_0^\infty d\omega_1 \,\Phi_{\rm G}(\omega_1,\omega_2,\mu) = \int_0^\infty d\omega_1 \,\Phi_4(\omega_1,\omega_2,\mu) \,,\\ &\int_0^\infty d\omega_2 \,\Phi_{\rm G}(\omega_1,\omega_2,\mu) = \int_0^\infty d\omega_2 \,\Phi_5(\omega_1,\omega_2,\mu) \,,\\ &\int_0^\infty d\omega_1 \,\int_0^\infty d\omega_2 \,\Phi_{\rm G}(\omega_1,\omega_2,\mu) = \frac{\lambda_E^2 + \lambda_H^2}{3} \,, \end{split}$$

The power counting:
$$F_L^{\text{soft},4q}/F_L^{\text{LP}} \sim \lambda_B/m_b$$

The asymptotic behaviors of Φ_G :

$$\Phi_{\rm G}(\omega_1,\omega_2,\mu)\sim\omega_1\,\omega_2^2$$
 at $\omega_1,\,\omega_2\to 0$

The explicit factorization formula:

$$\sum_{i=1}^{8} C_{i} F_{i,L}^{(p), \text{ soft } 4q} = -\frac{Q_{q} f_{B_{q}}}{m_{B_{q}}} \left(\int_{0}^{+\infty} \frac{d\omega_{1}}{\omega_{1}} \int_{0}^{+\infty} \frac{d\omega_{2}}{\omega_{2}} \left(C_{2} - \frac{C_{1}}{2N_{c}} \right) Q_{p} \left[F(-\frac{m_{p}^{2}}{m_{b}\omega_{2}}) - 1 \right] \times \Phi_{G}(\omega_{1}, \omega_{2}, \mu)$$

The convolution integral converges.

Numerics

The Φ_{G} parametrization:

$$\Phi_{\rm G}(\omega_1,\omega_2,\mu_0) = \frac{\lambda_E^2 + \lambda_H^2}{6} \frac{\omega_1 \omega_2^2}{\omega_0^5} \exp\left(-\frac{\omega_1 + \omega_2}{\omega_0}\right) \frac{\Gamma(\beta+2)}{\Gamma(\alpha+2)} U\left(\beta - \alpha, 4 - \alpha, \frac{\omega_1 + \omega_2}{\omega_0}\right)$$

- The up-loop contribution dominates; the charm-loop is 1-order smaller.
- The new power correction accidentally cancels the previous ones.

Clean channel to determine λ_B and to probe new physics.

Numerics

The B_d results:

	Central Value	Total Error	λ_{B_d}	$\{\widehat{\sigma}_{B_d}^{(1)},\widehat{\sigma}_{B_d}^{(2)}\}$	μ	ν	$\mu_{ m h}$	$ar{\Lambda}$	$m_c^{\rm PS}$
$10^8 \times \mathcal{BR}$	1.929 [1.900]	$+1.096 \\ -1.012$	$+0.680 \\ -0.439$	$^{+0.736}_{-0.779}$	$+0.083 \\ -0.299$	$+0.278 \\ -0.287$	$+0.246 \\ -0.066$	$+0.212 \\ -0.200$	$+0.043 \\ -0.043$
f_{\parallel}	0.408[0.407]	$+0.044 \\ -0.046$	$+0.015 \\ -0.015$	$+0.016 \\ -0.033$	$+0.002 \\ -0.009$	$+0.037 \\ -0.026$	$+0.007 \\ -0.002$	$+0.005 \\ -0.006$	$+0.002 \\ -0.002$
f_{\perp}	$0.592\left[0.593 ight]$	$^{+0.046}_{-0.044}$	$+0.015 \\ -0.015$	$^{+0.033}_{-0.016}$	$+0.009 \\ -0.002$	$+0.026 \\ -0.037$	$+0.002 \\ -0.007$	$+0.006 \\ -0.005$	$+0.002 \\ -0.002$
$\mathcal{A}_{ ext{CP}}^{ ext{dir},\parallel}$	0.126 [0.129]	$+0.043 \\ -0.027$	$+0.007 \\ -0.004$	$^{+0.017}_{-0.010}$	$+0.013 \\ -0.008$	$+0.027 \\ -0.018$	$+0.024 \\ -0.012$	$+0.007 \\ -0.007$	$+0.004 \\ -0.004$
$\mathcal{A}_{ ext{CP}}^{ ext{mix},\parallel}$	-0.197 [-0.154]	$^{+0.053}_{-0.084}$	$+0.019 \\ -0.036$	$^{+0.001}_{-0.002}$	$+0.021 \\ -0.047$	$^{+0.026}_{-0.040}$	$+0.015 \\ -0.029$	$+0.011 \\ -0.013$	$+0.008 \\ -0.009$
$\mathcal{A}_{\Delta\Gamma}^{\parallel}$	-0.972 [-0.980]	$+0.024 \\ -0.013$	$+0.009 \\ -0.004$	$^{+0.003}_{-0.002}$	$+0.013 \\ -0.005$	$+0.013 \\ -0.007$	$+0.010 \\ -0.004$	$+0.004 \\ -0.003$	$+0.002 \\ -0.002$
$\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir},\perp}$	0.330[0.326]	$+0.078 \\ -0.053$	$+0.015 \\ -0.012$	$^{+0.060}_{-0.035}$	$+0.035 \\ -0.014$	$+0.012 \\ -0.024$	$+0.014 \\ -0.010$	$+0.018 \\ -0.016$	$+0.018 \\ -0.017$
$\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix},\perp}$	0.136 [0.101]	$^{+0.087}_{-0.066}$	$+0.043 \\ -0.028$	$^{+0.015}_{-0.035}$	$+0.025 \\ -0.014$	$+0.060 \\ -0.038$	$+0.026 \\ -0.012$	$+0.003 \\ -0.003$	$+0.009 \\ -0.008$
${\cal A}_{\Delta\Gamma}^{\perp}$	0.934 [0.940]	$^{+0.017}_{-0.030}$	$+0.000 \\ -0.003$	$^{+0.009}_{-0.019}$	$+0.007 \\ -0.017$	$+0.001 \\ -0.002$	$+0.005 \\ -0.009$	$+0.006 \\ -0.007$	$+0.007 \\ -0.008$

Summary and prospects

- We have factorized the long-distance penguin contribution to $\bar{B} \rightarrow \gamma \gamma$ decay, for the first time in an exclusive decay.
- A novel B-meson DA is introduced, with quark and gluon fields localized on two different light-cone directions. It will open a new subfield about the inner structure of the B meson.
- The new contribution cancels the known factorizable power corrections, making $\overline{B} \rightarrow \gamma \gamma$ a clean channel to determine λB and to probe the non-standard dynamics.
- The developed formalism has a broad field of applications to the entire spectrum of the exclusive FCNC B-meson decays, including flagship modes, e.g. B→K*γ, B→K*µµ.

Thank you!

Backup

	B_d	B_s		
$\mathcal{A}^{\mathrm{LP,NLL}}\left[10^{-4}\right]$	3.4 + 1.9 i	-20 - 0.37 i		
$\mathcal{A}^{\rm fac, NLP} \left[10^{-4} \right]$	-0.15 - 0.53 i	0.92 + 2.6i		
$\mathcal{A}_{R}^{\mathrm{fac,NLP}}\left[10^{-4}\right]$	0.25 - 0.36 i	-1.6 + 2.6 i		
$\mathcal{A}^{\mathrm{had},\gamma}\left[10^{-4}\right]$	-0.30 - 0.17 i	1.4 - 0.0021 i		
$\mathcal{A}^{\text{soft, 4q}}\left[10^{-4}\right]$	(-0.0079 + 0.078 i)	-0.11 + 0.016 i		
$(F_u^{\text{LP,NLL}}, F_c^{\text{LP,NLL}})$	(-0.056 - 0.0092i, -0.048 - 0.0019i)	(-0.057 - 0.0094i, -0.049 - 0.0020i)		
$(F_u^{\mathrm{had},\gamma},F_c^{\mathrm{had},\gamma})$	(0.0051 + 0.00092i, 0.0043 + 0.00019i)	(0.0094 + 0.0016i, 0.0034 + 0.00016i)		
$(F_u^{\text{soft},4\mathbf{q}}, F_c^{\text{soft},4\mathbf{q}})$	(-0.0024, -0.00025)	(-0.0021, -0.00025)		
$(F_u^{\mathrm{HC}}, F_c^{\mathrm{HC}})$	(0.0055, 0.0055)	(0.0067, 0.0067)		
$(F_u^{\mathbf{m}_{\mathbf{q}}}, F_c^{\mathbf{m}_{\mathbf{q}}})$	(0.000049, 0.000049)	(0.00078, 0.00078) [0.00079]		
$(F_u^{\mathbf{A}_2}, F_c^{\mathbf{A}_2})$	(-0.0010, -0.0010)	(-0.0011, -0.0011)		
$(F_u^{\rm HT}, F_c^{\rm HT})$	(0.0046, 0.0046) [0.0047]	$(0.0048, 0.0048) \ [0.0050]$		
$(F_u^{\mathbf{Q}_{\mathbf{b}}}, F_c^{\mathbf{Q}_{\mathbf{b}}})$	(-0.0036, -0.0036)	(-0.0043, -0.0043)		
$(F_u^{\rm WA}, F_c^{\rm WA})$	(-0.0049 + 0.000092i, -0.0037 + 0.0056i)	(-0.0059 + 0.00011i, -0.0045 + 0.0065i)		
$(F_u^{\text{fac,NLP}}, F_c^{\text{fac,NLP}})$	(0.00054 + 0.000092i, 0.0018 + 0.0056i)	(0.00098 + 0.00011i, 0.0023 + 0.0065i)		
	[(0.00063 + 0.000092i, 0.0019 + 0.0056i)]	(0.0011 + 0.00011i, 0.0024 + 0.0065i)		
$(F_{R,u}^{\text{fac,NLP}}, F_{R,c}^{\text{fac,NLP}})$	(-0.0046 + 0.000092i, -0.0033 + 0.0056i)	(-0.0054 + 0.00011i, -0.0041 + 0.0065i)		

$$A = V_{uq}^* V_{ub} F_u + V_{cq}^* V_{cb} F_c \ (q = d, s)$$