QED corrections in leptonic B meson decays

周四红（Si－Hong Zhou）
 内蒙古大学（Inner Mongolia University）

17 Dec． 2023 HFCPV＠Fudan University，Shanghai

Based on：
Complete analysis on QED corrections to $B \rightarrow \tau^{+} \tau^{-}$JHEP 10 （2023） 073 in collaboration with Y．K．Huang，Y．L．Shen，X．C．Zhao

QED corrections to $B \rightarrow \tau \nu$ at Subleading power in progress

Outline

- Motivation for precision flavor physics
- QED corrections in QCD bound-states
- QED corrections to $B_{q} \rightarrow \tau^{+} \tau^{-}, B_{q} \rightarrow \tau \nu_{\tau}$ in SCET

$$
\left(B_{q} \rightarrow \tau^{+} \tau^{-} \text {at Leading Power and } B_{q} \rightarrow \tau \nu_{\tau} \text { at NLP }\right)
$$

- Summary

Why do we need to know the QED corrections in flavor physics?

- Large logarithmic $\ln \left(m_{b}^{2} / m_{\ell}^{2}\right)$ enhancements can mimic leptonwith QED flavor universality violation
- Expected precision of measurements may require the inclusion of QED corrections or at least a proof that no effects above 1% exist.
e.g. power-enhanced effects from QED correction in $B_{q} \rightarrow \mu^{+} \mu^{-}$ [M.Beneke et ac., Phys.Rev.Lett.120(2018)1]

a dynamical enhancement by a power of
$m_{b} / \Lambda_{\mathrm{QCD}}$ and by large logarithms
$\ln m_{b} \Lambda_{\mathrm{QCD}} / m_{\mu}^{2} \rightarrow 1 \%$ of $\operatorname{Br}\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)$
previous estimates of NLO QED
effects $\alpha_{\mathrm{em}} / \pi \sim 0.3 \%$

QED corrections in QCD bound-states

without QED

QCD contained in the meson decay constant for purely leptonic final state, in the absence of QED

$$
\langle 0| \bar{q}(0) \gamma^{\mu} \gamma_{5} b(0)\left|\bar{B}_{q}(p)\right\rangle=i f_{B_{q}} p^{\mu}
$$

with QED

- virtual photons can resolve the structure of B meson
- virtual photons can couple to initial and final states

Non-local time ordered products have to be evaluated when QED effects are included

$$
\langle 0| \int d^{4} x e^{i q x} T\left\{j_{\mathrm{QED}}(x), \mathscr{L}_{\Delta B=1}(0)\right\}\left|\bar{B}_{q}\right\rangle
$$

This can be done for QED bound-states but QCD is non-perturbative at low scales.

Scales in the problem

$B_{q} \rightarrow \ell^{+} \ell^{-}$is a muti-scale problem, we need the EFTs

- Hard scale m_{b}
- Hard-collinear scale $\sqrt{m_{b} \Lambda_{\mathrm{QCD}}}$
- Soft scale Λ_{QCD}
- Collinear scale $m_{\mu} \sim \Lambda_{\mathrm{QCD}}$ for $\ell=\mu$;

Hard-collinear scale $m_{\tau} \sim \sqrt{m_{b} \Lambda_{\mathrm{QCD}}}$ for $\ell=\tau$;


```
HQET & bHLET
```

We focus on $B_{q} \rightarrow \tau^{+} \tau^{-}$
heavy leptonic filed become to a
soft-collinear (sc) field in boost HLET after integrating m_{τ}

The extension form $B_{q} \rightarrow \mu^{+} \mu^{-}$to $B_{q} \rightarrow \tau^{+} \tau^{-}$is non-trival

Diagrams in the Weak EFT

Power-enhanced (Non-local SCET operator)

$$
\begin{aligned}
Q_{9} & =\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{q} \gamma^{\mu} P_{L} b\right) \sum_{\ell} \bar{\ell}_{\mu} \ell \\
Q_{10} & =\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{q} \gamma^{\mu} P_{L} b\right) \sum_{\ell} \bar{\ell}_{\gamma_{\mu}} \gamma_{5} \ell \\
Q_{7} & =\frac{e}{(4 \pi)^{2}} \bar{m}_{b}\left[\bar{q} \sigma^{\mu \nu} P_{R} b\right] F_{\mu \nu}
\end{aligned}
$$

Weak EFT operators

Not power-enhanced (local SCET operator)

Hard functions

We only consider Power-enhanced contribution

Non-local operator

$$
\widetilde{O}_{9}(s, t)=g_{\mu \nu}^{\perp}\left[\bar{\chi}_{C}\left(s n_{+}\right) \gamma_{\perp}^{\mu} P_{L} h_{v}(0)\right]\left[\bar{e}_{C}\left(t n_{+}\right) \gamma_{\perp}^{\nu} \ell_{\bar{C}}(0)\right]
$$

The Fourier-transformed SCET operators

$$
O_{9}(u)=n_{+} p_{C} \int \frac{d r}{2 \pi} e^{-i u\left(n_{+} p_{C}\right) r} \widetilde{O}_{9}(0, r), \quad u \equiv \frac{n_{+} p_{\ell}}{n_{+} p_{C}}
$$

$$
\sum_{k} C_{k}\left(\mu_{b}\right) Q_{k}=\int_{0}^{1} d u H_{9}\left(u, \mu_{b}\right) O_{9}(u)
$$

$$
H_{9}\left(u, \mu_{b}\right)=\mathscr{N}\left[C_{9 \text { eff }}^{(0)}\left(u, \mu_{b}\right)+C_{10}^{(0)}\left(u, \mu_{b}\right)-\frac{2 Q_{\ell}}{u} C_{7}^{\text {eff }}\left(u, \mu_{b}\right)\right]+\mathcal{O}\left(\alpha_{\mathrm{em}}\right) \quad \text { No endpoint divergence }
$$

Hard-collinear functions

Hard-collinear quark becomes soft field

(1) To convert hard-collinear quark into a soft quark to get a non-vanishing overlap the B-meson state, we need power suppressed interaction

$$
L_{\xi q}^{(1)}(x)=\bar{q}_{s}\left(x_{-}\right)\left[W_{\xi C} W_{C}\right]^{\dagger}(x) i D_{C \perp} \xi_{C}(x)+\text { h.c. } .
$$

Small component $\left(n_{-} p_{q}\right)$ of hard-collinear the same as soft momentum \longrightarrow Soft fields become delocalized along the light-cone

Hard-collinear functions

Hard-collinear quark becomes soft field

(2) The hard-collinear photon, $A_{C \perp}$ from $D_{C \perp}$, would be followed by the fusion

$$
\bar{\ell}_{C}+A_{\perp C} \rightarrow m_{\tau} \bar{\ell}_{C}
$$

through the leading power Lagrangian

$$
L_{m}^{(0)}(y)=m_{\tau} \bar{\ell}_{C}\left[i \quad D_{C \perp}, \frac{1}{i n_{+} D_{C}}\right] \frac{h_{+}}{2} \ell_{C}
$$

(3) heavy tau filed become to a soft-collinear (sc)
field in boost HLET after integrating m_{τ}

Hard-collinear functions

Match $\mathrm{SCET}_{\mathrm{I}}$ onto $\mathrm{HQET} \times \mathrm{bHLET}$

Hard-collinear functions

Integrate out intermediate hard-coll. scale

At tree level, the hard collinear function $J_{m}(u, \omega)$
$J_{m}^{(0)}\left(u, \omega ; \mu=\mu_{h c}\right)=\frac{\alpha}{4 \pi} Q_{\ell} Q_{s} m_{\ell} \frac{\bar{u}}{\omega} \ln \left(1+\frac{u}{\bar{u}} \frac{\omega m_{b}}{m_{\ell}^{2}}\right) \theta(u) \theta(\bar{u})$,
where $\omega=\left.\left.n_{-} p_{q} \sim \Lambda_{\mathrm{QCD}}\right|_{\text {power enhancement }}\right|_{\text {logarithms }}$
factor $1 / \lambda^{2}$

Factorization

After two-step matching starting from QED onto $\mathrm{SCET}_{\mathrm{I}}$, and successively onto HQET \times bHLET, the amplitude factorized as

$$
A_{9} \sim \int_{0}^{1} d u 2 H_{9}(u) \int_{0}^{\infty} d \omega J_{m}(u ; \omega)\left\langle\ell^{+} \ell^{-}\right| \widetilde{J}_{m \chi}^{A 1}\left|\bar{B}_{q}\right\rangle
$$

Renormalized (anti-) soft-coll. on-shell matrix elements

$$
\widetilde{J}_{m x}^{A 1}(v)=\left[\bar{q}_{s}\left(v n_{-}\right) Y\left(v n_{-}, 0\right) \frac{h_{-}}{2} P_{L} h_{v}(0)\right]\left[Y_{+}^{\dagger} Y_{-}\right](0)\left[\bar{\ell}_{s c}(0)\left(4 P_{R}\right) \ell_{\overline{s c}}(0)\right]
$$

Modified B-meson LCDA

$$
\phi_{+}(\omega) \sim\langle 0| \bar{q}_{s}\left(v n_{-}\right) Y\left(v n_{-}, 0\right) \quad h_{-} \gamma_{5} h_{v}(0)\left[Y_{+}^{\dagger} Y_{-}\right](0)\left|\bar{B}_{q}(p)\right\rangle
$$

soft function becomes process dependent!

Resumed amplitude and Numerical prediction

For LL accuracy, we can use standard LCDA and evolve it with QED corrections in the cusp anomalous dimension

$$
\langle 0| \bar{q}_{s}\left(v n_{-}\right) Y\left(v n_{-}, 0\right) \quad h_{-} \gamma_{5} h_{v}(0)\left[Y_{+}^{\dagger} Y_{-}\right](0)\left|\bar{B}_{q}(p)\right\rangle \sim U_{s}^{\mathrm{QED}}\left(\mu_{h c}, \mu_{s} ; \omega\right) F_{B_{q}}\left(\mu_{h c}\right) \phi_{+}\left(\omega ; \mu_{h c}\right)
$$

This is justified for power-enhanced corrections since they are already α suppressed
The resumed result to LL

$$
i A_{9}=T_{+}\left(\mu_{h c}\right) m_{B_{q}} F_{B_{q}} \int_{0}^{1} d u \bar{u} \int_{0}^{\infty} \frac{d \omega}{\omega} U_{h}\left(\mu_{b}, \mu_{h c}\right) U_{\ell}\left(\mu_{h c}, \mu_{s c}\right) U_{s}^{\mathrm{QED}}\left(\mu_{h c}, \mu_{s} ; \omega\right)
$$

kinematical dependence
Power enhanced factor

Numerical prediction: Complete NLO+LL QED virtual correction changes the branching fraction less than 1%, due to not large logarithms for tau

QED effects in $B \rightarrow \tau \nu$ at Subleading power

Power enhanced effects in $B \rightarrow \tau \nu$ at Leading Power is zero
Lead power

$$
B \rightarrow \ell^{+} \ell^{-}
$$

$$
\begin{aligned}
& Q_{9}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{q} \gamma^{\mu} P_{L} b\right) \sum_{\ell} \bar{e} \gamma_{\mu} \ell \\
& Q_{10}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{q} \gamma^{\mu} P_{L} b\right) \sum_{\ell} \bar{e} \gamma_{\mu} \gamma_{5} \ell
\end{aligned}
$$

$$
B \rightarrow \ell \nu
$$

$$
Q=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{q} \gamma^{\mu} P_{L} b\right) \sum_{\ell} \bar{\ell} \gamma_{\mu}\left(1-\gamma_{5}\right) \ell \quad A=C Q
$$

$$
H_{9}=C \text { and } H_{10}=-C
$$

$$
A=(C-C) \otimes J_{m} \otimes S \sim 0
$$

hard-collinear function at NLP

$$
\begin{aligned}
\tilde{O}(s, t)= & {\left[\bar{\chi}_{C}\left(s n_{+}\right) \gamma_{\perp}^{\mu} P_{L} h_{v}(0)\right]\left[\bar{\ell}_{C}\left(t n_{+}\right) \gamma_{\perp}^{\nu}\left(1-\gamma_{5}\right) \ell_{\bar{C}}(0)\right] } \\
L_{m}^{(0)}(y)= & m_{\tau} \bar{\ell}_{C}\left[i D_{C \perp}, \frac{1}{i n_{+} D_{C}}\right] \frac{h_{+}}{2} \ell_{C} \\
L_{\xi q}^{(2)}(x)= & \bar{q}_{s}\left(x_{-}\right)\left[W_{\xi C} W_{C}\right]^{\dagger}(x)\left(i n_{-} D+i D_{\perp}\left(i n_{+} D\right)^{-1} i D_{\perp}\right) \frac{h_{+}}{2} \xi_{C}(x) \\
& +\bar{q}_{s}\left(x_{-}\right) D_{s}^{\mu} x_{\perp \mu}\left[W_{\xi C} W_{C}\right]^{\dagger}(x) i \quad D_{\perp} \xi_{C}(x)+\mathrm{h} . \mathrm{c} .
\end{aligned}
$$

$$
\mathrm{HQET} \times \mathrm{bHLET} \text { operator } \widetilde{J}_{m \chi}^{A 1}=\left[\bar{v}_{s}\left(p_{q}\right) \frac{h}{2}\left(1-\gamma_{5}\right) u_{h}\left(p_{b}\right)\right]\left[\bar{u}_{s c}\left(p_{\ell}\right)\left(1-\gamma_{5}\right) v_{s \bar{c}}\left(p_{\nu}\right)\right]
$$

$$
J_{m}^{\mathrm{NLP}}(u, \omega ; \mu)=\frac{\alpha}{4 \pi} Q_{\ell} Q_{s} m_{\ell} u \bar{u}\left[\frac{1}{\epsilon}-\frac{\bar{u} \bar{n} \cdot p_{\ell}}{u \omega} \ln \left(1+\frac{u n \cdot p_{\ell} \omega}{\bar{u} m_{\ell}^{2}}\right)-\ln \left(\frac{\bar{u}^{2} m_{b} \bar{n} \cdot p_{\ell}+u \bar{u} m_{b} \omega}{\mu^{2}}\right)\right] \theta(u) \theta(\bar{u})
$$

the convolution integrals of the hard and jet functions do not suffer from endpoint divergences.

Local operator contribution

As the power-enhanced effect (non-local operator) is in NLP, we also need to consider local contribution.

Hard function

$$
\begin{aligned}
& Q=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{q} \gamma^{\mu} P_{L} b\right) \sum_{\ell} \bar{\ell} \gamma_{\mu}\left(1-\gamma_{5}\right) \ell \\
& \widetilde{J}_{m \chi}^{A 1}=m_{\ell}\left[\bar{u}_{s}\left(1+\gamma_{5}\right) h_{v}\right]\left[\bar{\ell}_{s c}\left(1-\gamma_{5}\right) \ell_{s \bar{c}}\right]
\end{aligned}
$$

HQET \times bHLET
Hard collinear function

Resummation, Numerical calculation... in progress

Summary

1. Structure depended QED corrections can be calculated in SCET, HQET, bHLET
—convolution of hard function, jet function and QED specific B-meson LCDA
at NLO completely at leading power for $B \rightarrow \tau^{+} \tau^{-}$and $B \rightarrow \tau \nu$ at NLP
——QED interesting effect \rightarrow power suppressed interaction $L_{\xi q}^{(1)}(x)$ lead to power enhanced correction $1 / \Lambda_{\mathrm{QCD}}$
2. QED factorization more complicated than in QCD due to charged external states _-theoretically interesting, one cannot naively generalise QCD to $\mathrm{QCD}+\mathrm{QED}$

> Thank you

Backup slides

hard: $k_{h}^{\mu}=m_{b}(1,1,1) \sim(1,1,1)$,
hard-collinear: $k_{h c}^{\mu}=\left(m_{b}, \Lambda_{\mathrm{QCD}}, \sqrt{m_{b} \Lambda_{\mathrm{QCD}}}\right) \sim\left(1, \lambda^{2}, \lambda\right)$,
anti-hard-collinear: $k_{h c}^{\mu}=\left(\Lambda_{\mathrm{QCD}}, m_{b}, \sqrt{m_{b} \Lambda_{\mathrm{QCD}}}\right) \sim\left(\lambda^{2}, 1, \lambda\right)$,
soft: $k_{s}^{\mu}=\left(\Lambda_{\mathrm{QCD}}, \Lambda_{\mathrm{QCD}}, \Lambda_{\mathrm{QCD}}\right) \sim\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$,
soft-collinear: $k_{s c}^{\mu}=(1 / b, b, 1) \Lambda_{\mathrm{QCD}}, \sim(1 / b, b, 1) \lambda^{2}$,
anti-soft-collinear: $k_{s c}^{\mu}=(b, 1 / b, 1) \Lambda_{\mathrm{QCD}}, \sim(b, 1 / b, 1) \lambda^{2}$,
soft heavy quark: $h_{v} \sim \lambda^{3}$, hard-collinear light quark: $\chi_{h c} \sim \lambda$, hard-collinear leptonic field: $\ell_{h c} \sim \lambda$, soft light quark: $q_{s} \sim \lambda^{3}$,
soft-collinear leptonic field: $\ell_{s c} \sim \lambda^{3}$, hard-collinear photon (gluon): $A_{h c}^{\mu}\left(G_{h c}^{\mu}\right) \sim\left(1, \lambda^{2}, \lambda\right)$,
soft photon (gluon): $A_{s}^{\mu}\left(G_{s}^{\mu}\right) \sim \lambda^{2}(1,1,1)$.

$$
\begin{gathered}
Y(x, y)=\exp \left[i e Q_{q} \int_{y}^{x} d z_{\mu} A_{s}^{\mu}(z)\right] \mathcal{P} \exp \left[i g_{s} \int_{y}^{x} d z_{\mu} G_{s}^{\mu}(z)\right] \\
Y_{ \pm}(x)=\exp \left[-i e Q_{\ell} \int_{0}^{\infty} d s n_{\mp} A_{s}\left(x+s n_{\mp}\right)\right]
\end{gathered}
$$

- when the photon is hard, $Q_{7}=\frac{2 Q_{\ell}}{u} \mathcal{O}_{9}$

$$
J_{9}\left(u ; \omega ; \mu=\mu_{h c}\right) \sim \frac{\alpha}{4 \pi} Q_{\ell} Q_{s} \frac{\bar{u}}{\omega} \ln \left(\frac{\omega m_{b}}{m_{\ell}^{2}}\right) \theta(u) \theta(\bar{u}),
$$

endpoint divergence $u \rightarrow 0$ in $B \rightarrow \mu \mu$.

$$
J_{m}^{(0)}\left(u ; \omega ; \mu=\mu_{h c}\right)=\frac{\alpha}{4 \pi} Q_{\ell} Q_{s} m_{\ell} \frac{\bar{u}}{\omega} \ln \left(1+\frac{u}{\bar{u}} \frac{\omega m_{b}}{m_{\ell}^{2}}\right) \theta(u) \theta(\bar{u})
$$

Numerical prediction: complete QED virtual correction

- The non-radiative branching fraction of $B_{q} \rightarrow \tau^{+} \tau^{-}$for central values of the parameters are

$$
\begin{aligned}
& \mathrm{Br}^{(0)}\left(B_{d} \rightarrow \tau^{+} \tau^{-}\right)=\left(2^{\left.2.051_{(\mathrm{LO})}-0.001_{(\mathrm{NLO})}\right) \times 10^{-8}}\right. \\
& \operatorname{Br}^{(0)}\left(B_{s} \rightarrow \tau^{+} \tau^{-}\right)=\left(7.147_{(\mathrm{LO})}-0.003_{(\mathrm{NLO})}\right) \times 10^{-7}
\end{aligned}
$$

\rightarrow Complete NLO+LL QED virtual correction (hard and hard collinear functions) changes the branching fraction by: $\sim 0.04 \%$

$$
\begin{equation*}
J_{m}^{(0)}\left(u ; \omega ; \mu=\mu_{h c}\right)=\frac{\alpha}{4 \pi} Q_{\ell} Q_{s} m_{\ell} \frac{\bar{u}}{\omega} \ln \left(1+\frac{u}{\bar{u}} \frac{\omega m_{b}}{m_{\ell}^{2}}\right) \theta(u) \theta(\bar{u}), \tag{30}
\end{equation*}
$$

where $\omega=\bar{n} \cdot \ell_{q} \sim \Lambda_{Q C D}$, power enhancement factor and large logarithms

- compared with $B_{d, s} \rightarrow \mu^{+} \mu^{-}$, power-enhanced correction ((hard) collinear functions)
$\sim 0.4 \%$, [Beneke, Bobeth, Szafron '17, '19]

$$
\begin{equation*}
J_{9}\left(u ; \omega ; \mu=\mu_{h c}\right) \sim \frac{\alpha}{4 \pi} Q_{\ell} Q_{s} \frac{\bar{u}}{\omega} \ln \left(\frac{\omega m_{b}}{m_{\ell}^{2}}\right) \theta(u) \theta(\bar{u}), \tag{31}
\end{equation*}
$$

QED effects in $B_{q} \rightarrow \tau \nu$ at Subleading power

$$
\langle 0| \bar{q}_{s}\left(v n_{-}\right) Y\left(v n_{-}, 0\right) h_{-} \gamma_{5} h_{v}(0)\left[Y_{+}^{\dagger} Y_{-}\right](0)\left|\bar{B}_{q}(p)\right\rangle \sim U_{s}^{\mathrm{QED}}\left(\mu_{h c}, \mu_{s} ; \omega\right) F_{B_{q}}\left(\mu_{h c}\right) \phi_{+}\left(\omega ; \mu_{h c}\right)
$$

This is justified for power-enhanced corrections since they are already α suppressed. What if we want to go beyond leading order in α or consider non-enhanced corrections?

Higher-order terms QCD and QED correction simultaneously are non-universal, non-local HQET matrix elements that have to be evaluated nonperturbatively. For example at one loop,

ΔE - cut on photon energy (e.g. due to detector resolution)
QED effects can be divided into two classes:

- Ultra-soft photons (under the assumption that $\Delta E \ll \Lambda_{\mathrm{QCD}}$)

Based on eikonal approximation,

$$
\varepsilon_{\mu}(k) \bar{u}(p) \gamma^{\mu} \frac{p+\not k+m}{(k+p)^{2}-m^{2}} \rightarrow \frac{\varepsilon_{\mu}(k) p^{\mu}}{p \cdot k} \bar{u}(p),
$$

note $k^{\mu} \ll p^{\mu}, m$

$$
\delta_{\mathrm{QED}} \sim \frac{\alpha}{\pi} \ln ^{2} \frac{m_{B}}{m_{\ell}}
$$

Large logarithmic enhancements can mimic lepton-flavor universality violation
\rightarrow Ultra-soft photon corrections to $\bar{B} \rightarrow D \tau^{-} \bar{\nu}_{\tau}$ relative to $\bar{B} \rightarrow D \mu^{-} \bar{\nu}_{\mu}$ [S. de Boer, T. Kitahara, I. Nisandzic, 1803.05881] - relevant for lepton universality test $R(D)$

Universal for $B \rightarrow \mu^{+} \mu^{-}$and $B \rightarrow \tau^{+} \tau^{-}$

$$
\overline{\mathrm{Br}}_{q \mu}(\Delta E) \equiv \overline{\operatorname{Br}}_{q \mu}^{(0)} \times \Omega\left(\Delta E ; \alpha_{\mathrm{em}}\right),
$$

with radiative factor

$$
\Omega\left(\Delta E ; \alpha_{\mathrm{em}}\right) \equiv\left(\frac{2 \Delta E}{m_{B_{q}}}\right)^{-\frac{2 \alpha_{\mathrm{em}}}{\pi}\left(1+\ln \frac{m_{\mu}^{2}}{m_{B q}^{2}}\right)}
$$

effective theory framework is set up. The dependence of the radiative factor Ω on $\Delta E=$ $\left(m_{B_{q}}^{2}-s_{\bar{\ell} \bar{\ell}}\right)^{1 / 2}$ is shown in Figure 6 for B_{s} mesons. One might consider $\Delta E \simeq 60 \mathrm{MeV}$ as

