QED corrections in leptonic B meson decays

周四红 (Si-Hong Zhou)

17 Dec. 2023 HFCPV@ Fudan University, Shanghai

Based on:

Complete analysis on QED corrections to $B \rightarrow \tau^+ \tau^-$ JHEP 10 (2023) 073

in collaboration with Y.K. Huang, Y.L. Shen, X.C.Zhao

QED corrections to $B \rightarrow \tau \nu$ at Subleading power in progress

内蒙古大学 (Inner Mongolia University)

- Motivation for precision flavor physics
- QED corrections in QCD bound-states
- QED corrections to $B_q \to \tau^+ \tau^-, B_q \to \tau \nu_\tau$ in SCET $(B_a \rightarrow \tau^+ \tau^- \text{ at Leading Power and } B_a \rightarrow \tau \nu_{\tau} \text{ at NLP})$

• Summary

Outline

Why do we need to know the QED corrections in flavor physics?

- Large logarithmic $\ln(m_h^2/m_\ell^2)$ enhancements can mimic leptonflavor universality violation
- Expected precision of measurements may require the inclusion of QED corrections or at least a proof that no effects above 1% exist.

e.g. power-enhanced effects from QED [M.Beneke et ac., Phys.Rev.Lett.120(20

> a dynamical enhancement by a power of $m_b/\Lambda_{\rm QCD}$ and by large logarithms $\ln m_b \Lambda_{\rm QCD}/m_\mu^2 \rightarrow 1\% \text{ of } {\rm Br}(B_q \rightarrow \mu^+\mu^-)$

with QED

correction in
$$B_q \rightarrow \mu^+ \mu^-$$

[18)1]

previous estimates of NLO QED effects $\alpha_{\rm em}/\pi \sim 0.3\%$

QED corrections in QCD bound-states

without QED

QCD contained in the meson decay constant for purely leptonic final state, in the absence of QED

$$\left\langle 0 \right|$$

virtual photons can resolve the structure of B meson virtual photons can couple to initial and final states Non-local time ordered products have to be evaluated

- - when QED effects are included

0

with QED

This can be done for QED bound-states but QCD is non-perturbative at low scales.

$$\bar{g}(0) \gamma^{\mu} \gamma_5 b(0) \left| \bar{B}_q(p) \right\rangle = i f_{B_q} p^{\mu}$$

$$\int d^4x \, e^{iqx} \, T \, \left\{ j_{\text{QED}}(x), \mathcal{L}_{\Delta B=1}(0) \right\} \, \left| \, \bar{B}_q \right\rangle$$

 $B_q \rightarrow \ell^+ \ell^-$ is a muti-scale problem , we need the EFTs

- Hard scale m_h
- Hard-collinear scale $\sqrt{m_b \Lambda_{\rm QCD}}$
- Soft scale Λ_{OCD}
- Collinear scale $m_{\mu} \sim \Lambda_{\text{QCD}}$ for $\ell = \mu$; Hard-collinear scale $m_{\tau} \sim \sqrt{m_b \Lambda_{\rm QCD}}$ for $\ell = \tau$;

We focus on $B_q \to \tau^+ \tau^-$

The extension form $B_q \rightarrow \mu^+ \mu^-$ to $B_q \rightarrow \tau^+ \tau^-$ is non-trival

Diagrams in the Weak EFT

Power-enhanced (Non-local SCET operator)

Not power-enhanced (local SCET operator)

Weak EFT operators

$$Q_{9} = \frac{\alpha_{\rm em}}{4\pi} \left(\bar{q} \gamma^{\mu} P_{L} b \right) \sum_{\ell} \bar{\ell} \gamma_{\mu} \ell$$
$$Q_{10} = \frac{\alpha_{\rm em}}{4\pi} \left(\bar{q} \gamma^{\mu} P_{L} b \right) \sum_{\ell} \bar{\ell} \gamma_{\mu} \gamma_{5} \ell$$
$$Q_{7} = \frac{e}{(4\pi)^{2}} \bar{m}_{b} \left[\bar{q} \sigma^{\mu\nu} P_{R} b \right] F_{\mu\nu}$$

6

We only consider Power-enhanced contribution

Hard functions

Non-local operator

$$\widetilde{O}_{9}(s,t) = g_{\mu\nu}^{\perp} \left[\overline{\chi}_{C}(sn_{+}) \gamma_{\perp}^{\mu} P_{L} h_{\nu}(0) \right] \left[\overline{\ell}_{C}(tn_{+}) \gamma_{\perp}^{\nu} \ell_{\overline{C}}(0) \right]$$

The Fourier-transformed SCET operators

$$O_{9}(u) = n_{+}p_{C} \int \frac{dr}{2\pi} e^{-iu(n_{+}p_{C})r} \widetilde{O}_{9}(0,r), \quad u \equiv \frac{n_{+}p_{\ell}}{n_{+}p_{C}}$$

$$\frac{2Q_{\ell}}{u} C_7^{\text{eff}}(u,\mu_b) + \mathcal{O}(\alpha_{\text{em}}) \quad \text{No endpoint diverg}$$

Hard-collinear quark becomes soft field

(1) To convert hard-collinear quark into a soft quark to get a non-vanishing overlap the B-meson state, we need power suppressed interaction

$$L_{\xi q}^{(1)}(x) = \bar{q}_s(x_{-}) [W_{\xi C} W_C]^{\dagger}(x) i \ D_{C \perp} \xi_C(x) + h.c$$

Small component (n_p_q) of hard-collinear the same delocalized along the light-cone

Hard-collinear quark becomes soft field

(2) The hard-collinear photon, $A_{C_{\perp}}$ from $D_{C_{\perp}}$, would be followed by the fusion

$$\bar{\ell}_C + A_{\perp C} \to m_\tau \bar{\ell}_C$$

through the leading power Lagrangian

$$L_{m}^{(0)}(y) = m_{\tau} \bar{\ell}_{C} \left[i \ D_{C\perp}, \frac{1}{in_{+}D_{C}} \right] \frac{h_{+}}{2} \ell_{C}$$

(3) heavy tau filed become to a soft-collinear (sc) field in boost HLET after integrating m_{τ}

Match SCET_I onto HQET \times bHLET

Therefore, we will match the time-ordered product of the SECT_I operators $O_9(u)$ with $L_{\xi q}^{(1)}(x)$ and $L_m^{(0)}(y)$,

$$\left\langle \mathcal{\ell}(p_{\ell})\,\bar{\ell}\left(p_{\bar{\ell}}\right)\,\left|\,\int d^4x\,\int d^4y\,T\left\{O_{9}(u),L^{(1)}_{\xi q}(x),L^{(0)}_{m}(y)\right\}\,\right|\,b\left(p_b\right)q\right\rangle$$

to matrix element of operator in HQET × bHLET,

$$= \left[\bar{q}_{s}(vn_{-}) Y(vn_{-},0) - \frac{\hbar_{-}}{2} P_{L} h_{v}(0) \right] \left[Y_{+}^{\dagger}Y_{-} \right](0) \left[\bar{\ell}_{sc}(0) \left(4P_{R} \right) \right]$$

Additional QED soft Wilson li

Integrate out intermediate hard-coll. scale

At tree level, the hard collinear function $J_m(u, \omega)$

$$J_m^{(0)}(u,\omega;\mu=\mu_{hc}) = \frac{\alpha}{4\pi} Q_\ell Q_s m_\ell \frac{\bar{u}}{\omega} \ln\left(1 + \frac{u}{\bar{u}} \frac{\omega m_b}{m_\ell^2}\right) \theta(u)$$

where $\omega = n_p_q \sim \Lambda_{\text{QCD}}$ logarithms
power enhancement
factor $1/\lambda^2$

 $u) \theta(\bar{u}),$

Factorization

After two-step matching starting from QED onto $SCET_{I}$, and successively onto $HQET \times bHLET$, the amplitude factorized as

$$A_9 \sim \int_0^1 du \, 2 \, H_9(u) \int_0^\infty d\omega \, J_m(u;\omega)$$

Renormalized (anti-) soft-coll. on-shell matrix elements $\left\langle \ell^{-}(p_{\ell}) \mid [\text{ soft coll. }] \mid 0 \right\rangle = Z_{\ell} \bar{u}_{sc}(p_{\ell}),$ $\left\langle \ell^{+}\left(p_{\bar{\ell}}\right) \left| \text{[soft anticoll.]} \right| 0 \right\rangle = Z_{\bar{\ell}} v_{\bar{s}c}\left(p_{\bar{\ell}}\right)$

Modified B-meson LCDA

$$\phi_{+}(\omega) \sim \left\langle 0 \left| \bar{q}_{s}(vn_{-}) Y(vn_{-},0) h_{-}\gamma_{5}h_{v}(0) \left[Y_{+}^{\dagger}Y_{-} \right] \right.$$
soft function becomes
(Depends on charges of the

Resumed amplitude and Numerical prediction

For LL accuracy, we can use standard LCDA and evolve it with QED corrections in the cusp anomalous dimension

 $\left\langle 0 \left| \bar{q}_{s}(vn_{}) Y(vn_{},0) h_{\gamma_{5}}h_{v}(0) \left[Y_{+}^{\dagger}Y_{-} \right](0) \right| \bar{B}_{q}(p) \right\rangle$

Numerical prediction: Complete NLO+LL QE the branching fraction less than 1 %, due to no

$$\left\langle \sim U_s^{\text{QED}} \left(\mu_{hc}, \mu_s; \omega \right) F_{B_q} \left(\mu_{hc} \right) \phi_+ \left(\omega; \mu_{hc} \right) \right.$$

This is justified for power-enhanced corrections since they are already α suppressed

$$\frac{d\omega}{\omega} U_{h}(\mu_{b},\mu_{hc}) U_{\ell}(\mu_{hc},\mu_{sc}) U_{s}^{\text{QED}}(\mu_{hc},\mu_{s};\omega)$$

$$2H_{9}(u;\mu_{b}) \phi_{+}(\omega;\mu_{hc}) \ln\left(1+\frac{u}{\bar{u}}\frac{n_{+}p_{\ell}-\omega}{m_{\ell}^{2}}\right)$$
hard function
$$\frac{\text{soft-LCDA}}{\text{D virtual correction changes}}$$
hard-colline function
$$\frac{1}{13} \text{ be logarithms for tau}$$

QED effects in $B \rightarrow \tau \nu$ at Subleading power

 $Q = \frac{\alpha_{\rm em}}{4\pi} \left(\overline{} \right)$

$$\bar{q} \gamma^{\mu} P_L b) \sum_{\ell} \bar{\ell} \gamma_{\mu} (1 - \gamma_5) \ell \qquad A = C Q$$
$$H_9 = C \text{ and } H_{10} = -C$$
$$A = (C - C) \otimes J_m \otimes S \sim 0$$

hard-collinear function at NLP

$$L_{\xi q}^{(2)}(x) \xrightarrow{\chi_{hc}} L_{m}^{(0)}(y) = \bar{q}_{s}(x_{-}) \left[W_{\xi C} W_{C} \right]^{\dagger}(x) \left(i n_{-} D + i D_{\perp} (i n_{+} D)^{-1} i D_{\perp} \right) \frac{\hbar_{+}}{2} \xi_{C}(x)$$

$$+ \bar{q}_{s}(x_{-}) D_{s}^{\mu} x_{\perp \mu} \left[W_{\xi C} W_{C} \right]^{\dagger}(x) i D_{\perp} \xi_{C}(x) + h.c.$$

$$HQET \times bHLET \text{ operator } \widetilde{J}_{m\chi}^{A1} = \left[\bar{v}_{s}(p_{q}) \frac{\hbar}{2} (1 - \gamma_{5}) u_{h}(p_{b}) \right] \left[\bar{u}_{sc}(p_{\ell}) (1 - \gamma_{5}) v_{s\bar{c}}(p_{\nu}) \right]$$

$$J_{m}^{NLP}(u, \omega; \mu) = \frac{\alpha}{4\pi} Q_{\ell} Q_{s} m_{\ell} u \bar{u} \left[\frac{1}{\epsilon} - \frac{\bar{u} \bar{n} \cdot p_{\ell}}{u \omega} \ln \left(1 + \frac{u n \cdot p_{\ell} \omega}{\bar{u} m_{\ell}^{2}} \right) - \ln \left(\frac{\bar{u}^{2} m_{b} \bar{n} \cdot p_{\ell} + u \bar{u} m_{b} \omega}{\mu^{2}} \right) \right] \theta(u)\theta(u)$$

the convolution integrals of the hard and jet functions do not suffer from endpoint divergences.

Local operator contribution

As the power-enhanced effect (non-local operator) is in NLP, we also need to consider local contribution.

Hard collinear function

Resummation, Numerical calculation... in progress

$$Q = \frac{\alpha_{\rm em}}{4\pi} \left(\bar{q} \, \gamma^{\mu} P_L b \right) \sum_{\ell} \bar{\ell} \, \gamma_{\mu} (1 - \gamma_5) \, \ell$$

$$\widetilde{J}_{m\chi}^{A1} = m_{\ell} \left[\overline{u}_{s} \left(1 + \gamma_{5} \right) h_{v} \right] \left[\overline{\ell}_{sc} \left(1 - \gamma_{5} \right) \ell_{s\bar{c}} \right]$$

HQET × bHLET

1. Structure depended QED corrections can be calculated in SCET, HQET, bHLET

power enhanced correction $1/\Lambda_{OCD}$

2. QED factorization more complicated than in QCD due to charged external states

Summary

- -convolution of hard function, jet function and QED specific B-meson LCDA
- at NLO completely at leading power for $B \to \tau^+ \tau^-$ and $B \to \tau \nu$ at NLP
- -QED interesting effect \rightarrow power suppressed interaction $L_{\xi_a}^{(1)}(x)$ lead to
- -theoretically interesting, one cannot naively generalise QCD to QCD+QED
 - Thank you

Backup slides

hard: $k_h^{\mu} = m_b (1, 1, 1) \sim (1, 1, 1)$, hard-collinear: $k_{hc}^{\mu} = \left(m_b, \Lambda_{\rm QCD}, \sqrt{m_b \Lambda_{\rm QCD}}\right)$ anti-hard-collinear: $k_{\overline{hc}}^{\mu} = \left(\Lambda_{\text{QCD}}, m_b, \sqrt{m_b \Lambda_{\text{QCD}}}\right)$ soft: $k_s^{\mu} = (\Lambda_{\text{QCD}}, \Lambda_{\text{QCD}}, \Lambda_{\text{QCD}}) \sim$ soft-collinear: $k_{sc}^{\mu} = (1/b, b, 1) \Lambda_{QCD}, \sim (1/b)$ anti-soft-collinear: $k_{sc}^{\mu} = (b, 1/b, 1) \Lambda_{QCD}, \sim (b, 1)$

soft heavy quark: $h_v \sim \lambda^3$, hard-collinear light quark: $\chi_{hc} \sim \lambda$, hard-collinear leptonic field: $\ell_{hc} \sim \lambda$, soft light quark: $q_s \sim \lambda^3$, soft-collinear leptonic field: $\ell_{sc} \sim \lambda^3$, hard-collinear photon (gluon): $A^{\mu}_{hc}(G^{\mu}_{hc}) \sim (1, \lambda^2, \lambda)$, soft photon (gluon): $A^{\mu}_{s}(G^{\mu}_{s}) \sim \lambda^{2}(1, 1, 1)$.

$$egin{aligned} & & (1,\,\lambda^2,\,\lambda)\,, \ & & (\lambda^2,\,1,\,\lambda)\,, \ & & (\lambda^2,\,\lambda^2,\,\lambda^2,\,\lambda^2)\,, \ & & (b,\,1)\,\lambda^2\,, \ & & (b,\,1)\,\lambda^2\,, \ & & (b,\,1)\,\lambda^2\,, \end{aligned}$$

$$Y(x,y) = \exp\left[i e Q_q \int_y^x dz_\mu A_s^\mu(z)
ight] \mathcal{P} \exp\left[i g_s \int_y^x dz_\mu G_s^\mu(z)
ight],$$

$$Y_{\pm}(x) = \exp\left[-i e Q_{\ell} \int_0^\infty ds \, n_{\mp} A_s \left(x + s n_{\mp}\right)\right] \,.$$

• when the photon is hard,
$$Q_7 = \frac{2Q_\ell}{u} \mathcal{O}_9$$

endpoint divergence $u \to 0$ in $B \to \mu \mu$.

$$J_m^{(0)}(u;\omega;\mu=\mu_{hc})=\frac{\alpha}{4\pi}\,Q_\ell Q_s\,m_\ell\,\frac{\bar{u}}{\omega}\ln\left(1+\frac{u}{\bar{u}}\,\frac{\omega\,m_b}{m_\ell^2}\right)\,\theta(u)\theta(\bar{u})\,,$$

$$\frac{\bar{u}}{\omega}\ln\left(\frac{\omega m_b}{m_\ell^2}\right) \theta(u)\theta(\bar{u}),$$

Numerical prediction: complete QED virtual correction

The non-radiative branching fraction of $B_q \rightarrow \tau^+ \tau^-$ for central values of the parameters 0 are

$$Br^{(0)}(B_d \to \tau^+ \tau^-) = (2.051_{(\text{LO})} - 0.001_{(\text{NLO})}) \times 10^{-8}$$
$$Br^{(0)}(B_s \to \tau^+ \tau^-) = (7.147_{(\text{LO})} - 0.003_{(\text{NLO})}) \times 10^{-7}$$

 \rightarrow Complete NLO+LL QED virtual correction (hard and hard collinear functions) changes the branching fraction by: $\sim 0.04\%$

$$J_m^{(0)}(u;\omega;\mu=\mu_{hc}) = \frac{\alpha}{4\pi} Q_\ell Q_s m_\ell \frac{\bar{u}}{\omega} \ln\left(1 + \frac{u}{\bar{u}} \frac{\omega m_b}{m_\ell^2}\right) \theta(u)\theta(\bar{u}), \qquad (30)$$

where $\omega = \bar{n} \cdot \ell_q \sim \Lambda_{QCD}$, power enhancement factor and large logarithms

- 0
- compared with $B_{d,s} \rightarrow \mu^+ \mu^-$, power-enhanced correction ((hard) collinear functions) $\sim 0.4\%$, [Beneke, Bobeth, Szafron '17, '19]

$$J_9(u;\omega;\mu=\mu_{hc})\sim \frac{\alpha}{4\pi}\,Q_\ell Q_s\,\frac{\bar{u}}{\omega}\ln\left(\frac{\omega\,m_b}{m_\ell^2}\right)\,\theta(u)\theta(\bar{u})\,,\tag{31}$$

$\left\langle 0 \left| \bar{q}_{s}(vn_{}) Y(vn_{},0) h_{}\gamma_{5}h_{v}(0) \left[Y_{+}^{\dagger}Y_{-} \right](0) \right| \bar{B}_{q}(p) \right\rangle$

This is justified for power-enhanced corrections since they are already α suppressed. What if we want to go beyond leading order in α or consider non–enhanced corrections?

loop,

QED effects in $B_a \rightarrow \tau \nu$ at Subleading power

$$\rangle \sim U_s^{\text{QED}}\left(\mu_{hc},\mu_s;\omega\right)F_{B_q}\left(\mu_{hc}\right) \phi_+\left(\omega;\mu_{hc}\right)$$

Higher-order terms QCD and QED correction simultaneously are non-universal, non-local HQET matrix elements that have to be evaluated nonperturbatively. For example at one

 ΔE – cut on photon energy (e.g. due to detector resolution) QED effects can be divided into two classes:

• Ultra-soft photons (under the assumption that $\Delta E \ll \Lambda_{\text{QCD}}$)

Based on eikonal approximation,

$$\varepsilon_{\mu}(k)\bar{u}(p)\gamma^{\mu}\frac{\not p+\not k+m}{(k+p)^2-m^2}\rightarrow \frac{\varepsilon_{\mu}(k)p}{p\cdot k}$$

note $k^{\mu} \ll p^{\mu}, m$

$$\delta_{ ext{QED}} \sim rac{lpha}{\pi} \ln^2 rac{m_B}{m_\ell}$$

Kitahara, I. Nisandzic, 1803.05881] — relevant for lepton universality test R(D)

Universal for $B \to \mu^+ \mu^-$ and $B \to \tau^+ \tau^-$

Large logarithmic enhancements can mimic lepton-flavor universality violation

 \rightarrow Ultra-soft photon corrections to $\bar{B} \rightarrow D\tau^- \bar{\nu}_{\tau}$ relative to $\bar{B} \rightarrow D\mu^- \bar{\nu}_{\mu}$ [S. de Boer, T.

 $\overline{\mathrm{Br}}_{q\mu}(\Delta E) \equiv$

 $\Omega(\Delta E; \alpha_{\rm em}) \equiv$

with radiative factor

$$\overline{\mathrm{Br}}_{q\mu}^{(0)} \times \Omega(\Delta E; \alpha_{\mathrm{em}}),$$

$$\left(\frac{2\Delta E}{m_{B_q}}\right)^{-\frac{2\alpha_{\rm em}}{\pi}\left(1+\ln\frac{m_{\mu}^2}{m_{B_q}^2}\right)}$$

. .

effective theory framework is set up. The dependence of the radiative factor Ω on $\Delta E =$ $(m_{B_q}^2 - s_{\ell \bar{\ell}})^{1/2}$ is shown in Figure 6 for B_s mesons. One might consider $\Delta E \simeq 60$ MeV as

