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QED corrections in leptonic B meson decays



Outline

• Motivation for precision flavor physics 

• QED corrections in QCD bound-states 

• QED corrections to  in SCET                                       

（  at Leading Power and  at NLP） 

• Summary

Bq → τ+ τ−, Bq → τ ντ

Bq → τ+ τ− Bq → τ ντ



Why do we need to know the QED corrections in flavor physics?

• Large logarithmic   enhancements can mimic lepton-
flavor universality violation 

• Expected precision of measurements may require the inclusion of 
QED corrections or at least a proof that no effects above 1% exist.

ln(m2
b /m2

ℓ) with QED

a dynamical enhancement by a power of 
 and by large logarithms 

 of Br( ) 

mb/ΛQCD

ln mbΛQCD/m2
μ → 1 % Bq → μ+μ−

> previous estimates of NLO QED 
effects  αem/π ∼ 0.3 %

e.g. power-enhanced effects from QED correction in            

[M.Beneke et ac., Phys.Rev.Lett.120(2018)1]

Bq → μ+μ−
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 QED corrections in QCD bound-states
without QED

with QED

QCD contained in the meson decay constant  for 
purely leptonic final state, in the absence of QED

⟨0 q̄(0) γμ γ5 b(0) B̄q(p)⟩ = i fBq
pμ

Non-local time ordered products have to be evaluated 
when QED effects are included

⟨0 ∫ d4x eiqx T {jQED(x), ℒΔB=1(0)} B̄q⟩

• virtual photons can resolve the structure of B meson

This can be done for QED bound-states but QCD is non-perturbative at low scales.4

• virtual photons can couple to initial and final states



Scales in the problem

• Hard scale  

• Hard-collinear scale  

• Soft scale  

• Collinear scale  for ;                                                                                        

Hard-collinear scale  for ; 

mb

mb ΛQCD

ΛQCD

mμ ∼ ΛQCD ℓ = μ

mτ ∼ mb ΛQCD ℓ = τ

 is a muti-scale problem , we need the EFTsBq → ℓ+ℓ−

 We focus on Bq → τ+τ−

 The extension form   to  is non-trivalBq → μ+μ− Bq → τ+τ−

Weak EFT

HQET ⊗ SCETI

HQET ⊗ bHLET

heavy leptonic filed become to a 
soft-collinear (sc) field in boost HLET after 

integrating mτ
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Diagrams in the Weak EFT

Power-enhanced  (Non-local SCET operator)

Not power-enhanced (local SCET operator)

Q9 =
αem

4π (q̄γμPLb)∑
ℓ

ℓ̄γμℓ

Q10 =
αem

4π (q̄γμPLb)∑
ℓ

ℓ̄γμγ5ℓ

Q7 =
e

(4π)2
m̄b [q̄σμνPRb] Fμν

Weak EFT operators

Q7 Q7Q9, Q10Q9, Q10
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Hard functions
We only consider Power-enhanced contribution

Õ 9(s, t) = g⊥
μν [χ̄C (sn+) γμ

⊥PLhv(0)] [ℓ̄C (tn+) γν
⊥ℓC̄(0)]

hard collinear

Non-local operator

The Fourier-transformed SCET operators

O9(u) = n+pC ∫
dr
2π

e−iu(n+pC) r Õ 9(0,r) , u ≡
n+pℓ

n+pC

∑
k

Ck (μb) Qk = ∫
1

0
du H9 (u, μb) O9(u)

H9 (u, μb) = 𝒩 [C(0)
9 eff (u, μb) + C(0)

10 (u, μb) −
2Qℓ

u
Ceff

7 (u, μb)] + 𝒪(αem) No endpoint divergence

Q9, Q10



Hard-collinear functions
Hard-collinear quark becomes soft field

L(1)
ξq (x) = q̄s (x−)[WξCWC]†(x) i /DC⊥ ξC(x) + h . c .

(1) To convert hard-collinear quark into a soft 
quark to get a non-vanishing overlap the B-meson 
state, we need power suppressed interaction

Small component ( ) of hard-collinear the same 

as soft momentum         Soft fields become 
delocalized along the light-cone 

n−pq
ūs(ℓq) /ε⊥(k)

/n+

2
1

n−pq

power enhanced factor
1

ΛQCD

L(1)
ξq (x)
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Hard-collinear functions

(2) The hard-collinear photon,  from , 
would be followed by the fusion 

AC⊥ DC⊥

ℓ̄C + A⊥C → mτ ℓ̄C

through the leading power Lagrangian

L(0)
m (y) = mτ ℓ̄C [i /DC⊥,

1
in+DC ]

/n+

2
ℓC

L(1)
ξq (x)

(3) heavy tau filed become to a soft-collinear (sc) 
field in boost HLET after integrating mτ

L(0)
m (y)

tree matching 
 ℓhc → ℓsc

Hard-collinear quark becomes soft field
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Hard-collinear functions
Match  onto SCETI HQET × bHLET

L(1)
ξq (x)

Therefore, we will match the time-ordered product of 
the  operators  with  and ,SECTI O9(u) L(1)

ξq (x) L(0)
m (y)

L(0)
m (y) tree matching 

 ℓhc → ℓsc

⟨ ℓ(pℓ) ℓ̄ (pℓ̄) ∫ d4x ∫ d4y T {O9(u), L(1)
ξq (x), L(0)

m (y)} b (pb) q (ℓq)⟩

to matrix element of operator in ,HQET × bHLET

J̃A1
mχ(v) = [q̄s (vn−) Y (vn−,0)

/n−

2
PL hv(0)] [Y†

+Y−](0) [ℓ̄sc(0)(4PR) ℓsc(0)]

Additional QED soft Wilson lines 
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Hard-collinear functions
Integrate out intermediate hard-coll. scale

L(1)
ξq (x)

L(0)
m (y) tree matching 

 ℓhc → ℓsc

At tree level, the hard collinear function Jm(u, ω)

J(0)
m (u, ω; μ = μhc) =

α
4π

Qℓ Qs mℓ
ū
ω

ln (1 +
u
ū

ω mb

m2
ℓ ) θ(u) θ(ū) ,

where  ω = n−pq ∼ ΛQCD

power enhancement 
factor 

logarithms

1/λ2
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Factorization

After two-step matching starting from QED onto  , and  successively onto , SCETI HQET × bHLET

the amplitude factorized as

A9 ∼ ∫
1

0
du 2 H9(u)∫

∞

0
dω Jm(u; ω) ⟨ℓ+ℓ− | J̃A1

mχ | B̄q⟩

Renormalized (anti-) soft-coll. on-shell matrix elements 

⟨ℓ− (pℓ) [ soft coll. ] 0⟩ = Zℓūsc (pℓ),

⟨ℓ+ (pℓ̄) [soft anticoll. ] 0⟩ = Zℓ̄vs̄c (pℓ̄)

Modified B-meson LCDA

ϕ+(ω) ∼ ⟨0 q̄s (vn−) Y (vn−,0) /n−γ5hv(0)[Y†
+Y−](0) B̄q(p)⟩

soft function becomes process dependent! 
(Depends on charges of the final state leptons) 

ℓ−
sc

ℓ+
sc̄

soft

soft

J̃A1
mχ(v) = [q̄s (vn−) Y (vn−,0)

/n−

2
PL hv(0)] [Y†

+Y−](0) [ℓ̄sc(0)(4PR) ℓsc(0)]

12



Resumed  amplitude and Numerical prediction

The resumed result to LL

kinematical dependence 

For LL accuracy, we can use standard LCDA and evolve it with QED  

corrections in the cusp anomalous dimension  

∼ UQED
s (μhc, μs; ω) FBq (μhc) ϕ+ (ω; μhc)

hard function soft-LCDA
hard-collinear 

function

Power enhanced factor 

⟨0 q̄s (vn−) Y (vn−,0) /n−γ5hv(0)[Y†
+Y−](0) B̄q(p)⟩

Numerical prediction: Complete NLO+LL QED virtual correction changes 
the branching fraction less than , due to not large logarithms for tau 1 %

This is justified for power-enhanced corrections 
since they are already  suppressedα

2 H9 (u; μb) ϕ+ (ω; μhc) ln (1 +
u
ū

n+pℓ−ω
m2

ℓ )

i A9 = T+ (μhc) mBq
FBq ∫

1

0
du ū ∫

∞

0

dω
ω

Uh(μb, μhc) Uℓ(μhc, μsc) UQED
s (μhc, μs; ω)
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QED effects in  at Subleading powerB → τ ν

νℓ Q =
αem

4π (q̄ γμ PL b)∑
ℓ

ℓ̄ γμ (1 − γ5) ℓ

H9 = C and H10 = − C

A = (H9 + H10) ⊗ Jm ⊗ S

A = C Q

Q9 =
αem

4π (q̄ γμ PL b)∑
ℓ

ℓ̄ γμ ℓ

Q10 =
αem

4π (q̄ γμ PL b)∑
ℓ

ℓ̄ γμ γ5 ℓ

B → ℓ+ ℓ−

B → ℓ ν

Power enhanced effects in  at Leading Power is zeroB → τ ν
Lead power

A = (C − C) ⊗ Jm ⊗ S ∼ 0
14



 hard-collinear function at NLP 

L(2)
ξq (x)

L(0)
m (y)

Õ(s, t) = [χ̄C (sn+) γμ
⊥ PL hv(0)] [ℓ̄C (tn+) γν

⊥ (1 − γ5) ℓC̄(0)]
L(0)

m (y) = mτ ℓ̄C [i /DC⊥,
1

in+DC ]
/n+

2
ℓC

L(2)
ξq (x) = q̄s (x−) [WξCWC]

†
(x)(i n−D + i /D⊥ (i n+D)−1 i /D⊥) /n+

2
ξC(x)

+ q̄s (x−) Dμ
s x⊥μ [WξCWC]

†
(x) i /D⊥ ξC(x) + h . c .

JNLP
m (u, ω; μ) =

α
4π

Qℓ Qs mℓ u ū [ 1
ϵ

−
ū n̄ ⋅ pℓ

u ω
ln (1 +

u n ⋅ pℓ ω
ū m2

ℓ ) − ln ( ū2 mb n̄ ⋅ pℓ + u ū mb ω
μ2 )] θ(u)θ(ū)

the convolution integrals of the hard and jet functions do not suffer from endpoint divergences.  

J̃A1
mχ = [v̄s(pq)

/n
2

(1 − γ5) uh(pb)] [ūsc(pℓ) (1 − γ5) vsc̄(pν)]operator HQET × bHLET

Õ

endpoint divergence ?

νhc
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Local operator contribution 

J̃A1
mχ = mℓ [ūs (1 + γ5) hv] [ℓ̄sc (1 − γ5) ℓsc̄]

Q =
αem

4π (q̄ γμ PL b)∑
ℓ

ℓ̄ γμ (1 − γ5) ℓ

As the power-enhanced effect (non-local operator) is in NLP, 
we also need to consider local contribution.

HQET × bHLET
Hard function

Hard collinear function

Resummation, Numerical calculation…  in progress

νℓ νℓ

16



power enhanced correction 1/ΛQCD

——theoretically interesting, one cannot naively generalise QCD to QCD+QED

1. Structure depended QED corrections can be calculated in SCET , HQET, bHLET

——convolution of hard function, jet function and QED specific B-meson LCDA

at NLO completely at leading power for and  at NLPB → τ νB → τ+ τ−

2. QED factorization more complicated than in QCD due to charged external states 

Thank you 

——QED interesting effect       power suppressed interaction  lead to   L(1)
ξq (x)→

Summary



Backup slides









QED effects in  at Subleading powerBq → τν

∼ UQED
s (μhc, μs; ω) FBq (μhc) ϕ+ (ω; μhc)⟨0 q̄s (vn−) Y (vn−,0) /n−γ5hv(0)[Y†

+Y−](0) B̄q(p)⟩

This is justified for power-enhanced corrections since they are 
already  suppressed. What if we want to go beyond leading order 
in α or consider non–enhanced corrections? 

α






