PQCD of Λ_{b} decays ：progress

韩佳杰
第二十届重味物理和CP破坏研讨会＠复旦大学（2023．12上海）

Based on EPJC82，686（2022）and arXiv：2312．xxxxx
In collaboration with Ya Li，Ji－Xin Yu（余纪新），Hsiang－nan Li，Yue－Long Shen， Zhen－Jun Xiao and Fu－Sheng Yu

Outline

- Why baryon physics?
- PQCD framework in baryon
- PQCD of semileptonic Λ_{b} decays
- PQCD of two-body Λ_{b} decays
- Summary

Heavy flavor physics and CPV

- Heavy flavor physics has achieved great progress in meson systems,
- KM mechanism for the CPV has established in B meson decays,
- But the studies on heavy flavor baryons are still limited.
- SM and cosmology require CPV,
- Which is well established in K, B and D mesons, but never established in any baryon.
- Comparison between predictions and measurements is helpful to test SM and search NP.

HADRONS

non-trivial extension more is different

MESON BARYON

Opportunities and Challenges

- LHCb is a baryon factory, has large Λ_{b} production: $\frac{N_{\Lambda_{b}}}{N_{B^{0},-}} \sim 0.5$
- Baryon CPV measurements in LHCb have reached to order of 1% [LHCb,2018]

$$
A_{C P}\left(\Lambda_{b} \rightarrow p \pi^{-}\right)=(-3.5 \pm 1.7 \pm 2.0) \%, A_{C P}\left(\Lambda_{b} \rightarrow p K^{-}\right)=(-2.0 \pm 1.3 \pm 1.0) \%
$$

- CPV in some B meson decays are as large as 10% [PDG,2022] :
$A_{C P}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)=(-8.34 \pm 0.32) \%, A_{C P}\left(B^{0} \rightarrow K^{* 0} \eta\right)=(19 \pm 5) \%, A_{C P}\left(B_{s} \rightarrow K^{-} \pi^{+}\right)=(22.4 \pm 1.2) \%$
- The CPV in b-baryon can be observed soon.
- QCD dynamics for baryon decays:
Oone more hard gluon; O
Opower counting rule;Why CPV of $\Lambda_{b} \rightarrow p \pi, p K$ are so small
- Non-perturbative inputs

OTheoretical uncertainties are dominated by non-perturbative inputs, such as LCDAs

- Observables

OT-odd triple products $\left(\overrightarrow{p_{1}} \times \overrightarrow{p_{2}}\right) \cdot \overrightarrow{p_{3}}$, defined by kinematics, but unclear related to decay amplitudes.

Theoretical progresses

- QCD studies on baryons are limited
\checkmark Generalized factorization [Hsiao,Geng,2015; Liu,Geng,2021];
lost of non-factorizable contributions, such as types of W-exchange diagrams
$\sqrt{ }$ QCDF [Zhu,Ke,Wei,2016;2018]
based on diquark picture, no W-exchange diagrams
$\sqrt{ }$ PQCD [Lü,Wang,Zou,Ali,Kramer,2009]
only considering the leading twist of LCDAs

	measurement	Generalized factorization	QCDF	PQCD
$B r\left(\Lambda_{b} \rightarrow p \pi^{-}\right) \times 10^{-6}$	4.5 ± 0.8	4.2 ± 0.7	$4.66_{-1.81}^{+2.22}$	$4.11 \sim 4.57$
$B r\left(\Lambda_{b} \rightarrow p K^{-}\right) \times 10^{-6}$	5.4 ± 1.0	4.8 ± 0.7	$1.82_{-1.07}^{+0.97}$	$1.70 \sim 3.15$
$A_{C P}\left(\Lambda_{b} \rightarrow p \pi^{-}\right) \%$	-2.5 ± 2.9	-3.9 ± 0.2	-32_{-1}^{+49}	$-3.74 \sim-3.08$
$A_{C P}\left(\Lambda_{b} \rightarrow p K^{-}\right) \%$	-2.5 ± 2.2	5.8 ± 0.2	-3_{-4}^{+25}	$8.1 \sim 11.4$

- More is different, baryons are very different from mesons!
- Factorization: heavy-to-light form factor is factorizable at leading power in SCET and no endpoint singularity appears! [Wei Wang, 1112.0237]

$$
\xi_{\Lambda_{b} \rightarrow \Lambda}=f_{\Lambda_{b}} \Phi_{\Lambda_{b}}\left(x_{i}\right) \otimes J\left(x_{i}, y_{i}\right) \otimes f_{\Lambda} \Phi_{\Lambda}\left(y_{i}\right)
$$

- However, the leading-power result is one order smaller than the total one

OLeading-power: $\xi_{\Lambda_{b} \rightarrow \Lambda}(0)=-0.012$ [W.Wang, 2011]
OTotal form factor: $\xi_{\Lambda_{b} \rightarrow \Lambda}(0)=0.18$ [Y.L.Shen, Y.M.Wang, 2016]

PQCD approach

- PQCD has successfully predicted CPV in B meson decays

$$
\begin{array}{r}
A_{C P}\left(B \rightarrow \pi^{+} \pi^{-}\right)=(30 \pm 20) \%, \quad A_{C P}\left(B \rightarrow K^{+} \pi^{-}\right)=(-17 \pm 5) \% \\
\quad[\text { Keum,H-n.Li,Sanda,2000; C.D.Lü,Ukai,M.Z.Yang,2000] } \\
A_{C P}\left(B \rightarrow \pi^{+} \pi^{-}\right)=(32 \pm 4) \%, \quad A_{C P}\left(B \rightarrow K^{+} \pi^{-}\right)=(-8.3 \pm 0.4) \% \\
{[P D G, 2022 ; \text { first measurements were made in 2001] }}
\end{array}
$$

Factorization hypothesis:

$$
\begin{aligned}
\mathscr{A} & =\left\langle M_{2} M_{3}\right| \mathscr{H}|B\rangle \\
& \sim \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{d^{4} k_{3}}{(2 \pi)^{4}} \Psi_{B}\left(k_{1}, \mu\right) \Psi_{2}\left(k_{2}, \mu\right) \Psi_{3}\left(k_{3}, \mu\right) \cdot H\left(k_{1}, k_{2}, k_{3}, \mu\right) C_{i}(\mu)
\end{aligned}
$$

- Under collinear factorization:

$$
\text { Oendpoint singularity: propagator } \sim \frac{1}{x_{1} x_{2} Q^{2}} \rightarrow \infty \text { when } x_{1,2} \rightarrow 0,1
$$

$$
\mathscr{A} \sim \int_{0}^{1} d x_{1} d x_{2} d x_{3} \phi_{B}\left(x_{1}, \mu\right) * H\left(x_{1}, x_{2}, x_{3}, \mu, \alpha_{s}\left(x_{i}, \mu\right)\right) * \phi_{\eta}\left(x_{2}, \mu\right) \phi_{J / \psi}\left(x_{3}, \mu\right)
$$

- PQCD approach (based on k_{T} factorization): retain transverse momentum of parton k_{T}

$$
\text { Opropagator } \sim \frac{1}{x_{1} x_{2} Q^{2}+\left|k_{i T}\right|^{2}}
$$

$$
\mathscr{A}=\left\langle M_{2} M_{3}\right| \mathscr{H}|B\rangle
$$

$$
\sim \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{d^{4} k_{3}}{(2 \pi)^{4}} \Psi_{B}\left(k_{1}, \mu\right) \Psi_{2}\left(k_{2}, \mu\right) \Psi_{3}\left(k_{3}, \mu\right) \cdot H\left(k_{1}, k_{2}, k_{3}, \mu\right) C_{i}(\mu)
$$

$$
\sim \int_{0}^{1} d x_{2} d x_{2} d x_{3} \iint \frac{d^{2} k_{1 T}}{(2 \pi)^{2}} \frac{d^{2} k_{2 T}}{(2 \pi)^{2}} \frac{d^{2} k_{3 T}}{(2 \pi)^{2}} \phi_{B}\left(x_{1}, k_{1 T}, \mu\right) \phi_{2}\left(x_{2}, k_{2 T}, \mu\right) \phi_{3}\left(x_{3}, k_{3 T}, \mu\right) \cdot H\left(x_{1}, x_{2}, x_{3}, k_{1 T}, k_{2 T}, k_{3 T}, \mu\right) C_{i}(\mu) d d
$$

$$
H\left(x_{i}, k_{T}, \mu\right) \sim \frac{N_{1}\left(x_{1}, x_{2}, x_{3}\right) N_{2}\left(x_{1}, x_{2}, x_{3}\right)}{l^{2} p_{c}^{2}}=\frac{N_{1}\left(x_{1}, x_{2}, x_{3}\right)}{x_{1} x_{3} M_{B}^{2}-\left|k_{1 T}-k_{3 T}\right|^{2}} \frac{N_{2}\left(x_{1}, x_{2}, x_{3}\right)}{M_{B}^{2}\left(1-x_{3}\right)-\left|k_{3 T}\right|^{2}}
$$

- Resum double-log radiative correction, obtain k_{T} Sudakov factor $S\left(x_{i}, b_{i}\right)$ and threshold Sudakov factor $S_{t}\left(x_{i}\right)$.
[NPB (Collins, 1981)
NPB (Botts, Sterman, 1989) PRD (Hsiang-nan Li, 1995) PRL (Hsiang-nan Li, 1995) PRD (Hsiang-nan Li, 1996) PRD (Hsiang-nan Li, 1998)]

- PQCD approach (based on k_{T} factorization): retain transverse momentum of parton k_{T}

Opropagator $\sim \frac{1}{x_{1} x_{2} Q^{2}+\left|k_{i T}\right|^{2}}$

$$
\mathscr{A}=\left\langle M_{2} M_{3}\right| \mathscr{H}|B\rangle
$$

$\sim \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{d^{4} k_{3}}{(2 \pi)^{4}} \Psi_{B}\left(k_{1}, \mu\right) \Psi_{2}\left(k_{2}, \mu\right) \Psi_{3}\left(k_{3}, \mu\right) \cdot H\left(k_{1}, k_{2}, k_{3}, \mu\right) C_{i}(\mu)$

after Fourier tramsform
$\sim \int_{0}^{1} d x_{1} d x_{2} d x_{3} \int d^{2} b_{1} d^{2} b_{2} d^{2} b_{3} \phi_{B}\left(x_{1}, b_{1}, \mu\right) \phi_{2}\left(x_{2}, b_{2}, \mu\right) \phi_{3}\left(x_{3}, b_{3}, \mu\right) \cdot H\left(x_{1}, x_{2}, x_{3}, b_{1}, b_{2}, b_{3}, \mu\right) C_{i}(\mu) \times \Pi_{i} S\left(x_{i}, b_{i}\right) \times S_{t}\left(x_{i}\right)$

$\Lambda_{b} \rightarrow p$ form factors in PQCD

$$
F_{i}\left(q^{2}\right) \sim \int_{0}^{1} d[x] d\left[x^{\prime}\right] \int d^{2}[b] d^{2}\left[b^{\prime}\right] \phi_{\Lambda_{b}}([x],[b], \mu) \cdot H\left([x],\left[x^{\prime}\right],[b],\left[b^{\prime}\right], \mu\right) C_{i}(\mu) \cdot \phi_{p}\left(\left[x^{\prime}\right],\left[b^{\prime}\right], \mu\right) \cdot \Pi_{i} S\left(x_{i}, b_{i}\right) S_{t}\left(x_{i}\right)
$$

b

$u \quad b$ \qquad u

$\Lambda_{b} \rightarrow p$ form factors in PQCD

$$
F_{i}\left(q^{2}\right) \sim \int_{0}^{1} d[x] d\left[x^{\prime}\right] \int d^{2}[b] d^{2}\left[b^{\prime}\right] \phi_{\Lambda_{b}}([x],[b], \mu) \cdot H\left([x],\left[x^{\prime}\right],[b],\left[b^{\prime}\right], \mu\right) C_{i}(\mu) \cdot \phi_{p}\left(\left[x^{\prime}\right],\left[b^{\prime}\right], \mu\right) \cdot \Pi_{i} S\left(x_{i}, b_{i}\right) S_{t}\left(x_{i}\right)
$$

b

$u \quad b$ \qquad u

\qquad

$\Lambda_{b} \rightarrow p$ form factors in PQCD

- LCDAs for Λ_{b}

$$
\begin{align*}
& \Phi_{\Lambda_{b}}^{\alpha \beta \delta}\left(t_{1}, t_{2}\right) \equiv \epsilon_{i j k}\langle 0|\left[u_{i}^{T}\left(t_{1} \bar{n}\right)\right]_{\alpha}\left[0, t_{1} \bar{n}\right]\left[d_{j}\left(t_{2} \bar{n}\right)\right]_{\beta}\left[0, t_{2} \bar{n}\right]\left[b_{k}(0)\right]_{\delta}\left|\Lambda_{b}(v)\right\rangle \\
& =\frac{1}{4}\left\{f_{\Lambda_{b}}^{(1)}(\mu)\left[\tilde{M}_{1}\left(v, t_{1}, t_{2}\right) \gamma_{5} C^{T}\right]_{\beta \alpha}+f_{\Lambda_{b}}^{(2)}(\mu)\left[\tilde{M}_{2}\left(v, t_{1}, t_{2}\right) \gamma_{5} C^{T}\right]_{\beta \alpha}\right\}\left[\Lambda_{b}(v)\right]_{\delta} \tag{23}\\
& M_{2}\left(\omega_{1}, \omega_{2}\right)=\frac{\not h}{\sqrt{2}} \psi_{2}\left(\omega_{1}, \omega_{2}\right)+\frac{\hbar}{\sqrt{2}} \psi_{4}\left(\omega_{1}, \omega_{2}\right) \\
& M_{1}\left(\omega_{1}, \omega_{2}\right)=\frac{\hbar h h}{4} \psi_{3}^{+-}\left(\omega_{1}, \omega_{2}\right)+\frac{h h \hbar \hbar}{4} \psi_{3}^{-+}\left(\omega_{1}, \omega_{2}\right) \\
& \psi_{2}\left(x_{2}, x_{3}\right)=\frac{x_{2} x_{3}}{\omega_{0}^{4}} m_{\Lambda_{b}}^{4} e^{-\left(x_{2}+x_{3}\right) m_{\Lambda_{b}} / \omega_{0}}, \\
& \psi_{3}^{+-}\left(x_{2}, x_{3}\right)=\frac{2 x_{2}}{\omega_{0}^{3}} m_{\Lambda_{b}}^{3} e^{-\left(x_{2}+x_{3}\right) m_{\Lambda_{b}} / \omega_{0}}, \\
& \psi_{3}^{-+}\left(x_{2}, x_{3}\right)=\frac{2 x_{3}}{\omega_{0}^{3}} m_{\Lambda_{b}}^{3} e^{-\left(x_{2}+x_{3}\right) m_{\Lambda_{b}} / \omega_{0}}, \\
& \psi_{4}\left(x_{2}, x_{3}\right)=\frac{1}{\omega_{0}^{2}} m_{\Lambda_{b}}^{2} e^{-\left(x_{2}+x_{3}\right) m_{\Lambda_{b}} / \omega_{0}}, \\
& \begin{array}{l}
>\text { P.Ball, V.M.Braun, E.Gardi (2008) } \\
>\text { G.Bell, T.Feldmann, Yu-Ming Wang, M.W.Y.Yip (2013) } \\
>\text { Yu-Ming Wang, Yue-Long Shen (2016) }
\end{array}
\end{align*}
$$

$\Lambda_{b} \rightarrow p$ form factors in PQCD

- LCDAs for proton

$$
\begin{aligned}
& \bar{\Phi}_{\text {proton }}^{\alpha \beta \gamma} \equiv\left\langle\mathcal{P}\left(p^{\prime}\right)\right| \bar{u}_{\alpha}^{i}(0) \bar{u}_{\beta}^{j}\left(z_{1}\right) \bar{d}_{\gamma}^{k}\left(z_{2}\right)|0\rangle \\
& =\frac{1}{4}\left\{S_{1} m_{p} C_{\beta \alpha}\left(\bar{N}^{+} \gamma_{5}\right)_{\gamma}+S_{2} m_{p} C_{\beta \alpha}\left(\bar{N}^{-} \gamma_{5}\right)_{\gamma}+P_{1} m_{p}\left(C \gamma_{5}\right)_{\beta \alpha} \bar{N}_{\gamma}^{+}+P_{2} m_{p}\left(C \gamma_{5}\right)_{\beta \alpha} \bar{N}_{\gamma}^{-}+V_{1}(C P)_{\beta \alpha}\left(\bar{N}^{+} \gamma_{5}\right)_{\gamma}\right. \\
& +V_{2}(C P)_{\beta \alpha}\left(\bar{N}^{-} \gamma_{5}\right)_{\gamma}+V_{3} \frac{m_{p}}{2}\left(C \gamma_{\perp}\right)_{\beta \alpha}\left(\bar{N}^{+} \gamma_{5} \gamma^{\perp}\right)_{\gamma}+V_{4} \frac{m_{p}}{2}\left(C \gamma_{\perp}\right)_{\beta \alpha}\left(\bar{N}^{-} \gamma_{5} \gamma^{\perp}\right)_{\gamma}+V_{5} \frac{m_{p}^{2}}{2 P z}(C \neq)_{\beta \alpha}\left(\bar{N}^{+} \gamma_{5}\right)_{\gamma} \\
& +V_{6} \frac{m_{p}^{2}}{2 P z}(C \neq)_{\beta \alpha}\left(\bar{N}^{-} \gamma_{5}\right)_{\gamma}+A_{1}\left(C \gamma_{5} P\right)_{\beta \alpha}\left(\bar{N}^{+}\right)_{\gamma}+A_{2}\left(C \gamma_{5} P\right)_{\beta \alpha}\left(\bar{N}^{-}\right)_{\gamma}+A_{3} \frac{m_{p}}{2}\left(C \gamma_{5} \gamma_{\perp}\right)_{\beta \alpha}\left(\bar{N}^{+} \gamma^{\perp}\right)_{\gamma} \\
& +A_{4} \frac{m_{p}}{2}\left(C \gamma_{5} \gamma_{\perp}\right)_{\beta \alpha}\left(\bar{N}^{-} \gamma^{\perp}\right)_{\gamma}+A_{5} \frac{m_{p}^{2}}{2 P z}\left(C \gamma_{5} \neq\right)_{\beta \alpha}\left(\bar{N}^{+}\right)_{\gamma}+A_{6} \frac{m_{p}^{2}}{2 P z}\left(C \gamma_{5} \not\right)_{\beta \alpha}\left(\bar{N}^{-}\right)_{\gamma}-T_{1}\left(i C \sigma_{\perp P}\right)_{\beta \alpha}\left(\bar{N}^{+} \gamma_{5} \gamma^{\perp}\right)_{\gamma} \\
& -T_{2}\left(i C \sigma_{\perp P}\right)_{\beta \alpha}\left(\bar{N}^{-} \gamma_{5} \gamma^{\perp}\right)_{\gamma}-T_{3} \frac{m_{p}}{P z}\left(i C \sigma_{P_{z}}\right)_{\beta \alpha}\left(\bar{N}^{+} \gamma_{5}\right)_{\gamma}-T_{4} \frac{m_{p}}{P z}\left(i C \sigma_{z P}\right)_{\beta \alpha}\left(\bar{N}^{-} \gamma_{5}\right)_{\gamma}-T_{5} \frac{m_{p}^{2}}{2 P z}\left(i C \sigma_{\perp z}\right)_{\beta \alpha}\left(\bar{N}^{+} \gamma_{5} \gamma^{\perp}\right)_{\gamma} \\
& \left.-T_{6} \frac{m_{p}^{2}}{2 P z}\left(i C \sigma_{\perp z}\right)_{\beta \alpha}\left(\bar{N}^{-} \gamma_{5} \gamma^{\perp}\right)_{\gamma}+T_{7} \frac{m_{p}}{2}\left(C \sigma_{\perp \perp^{\prime}}\right)_{\beta \alpha}\left(\bar{N}^{+} \gamma_{5} \sigma^{\perp \perp^{\prime}}\right)_{\gamma}+T_{8} \frac{m_{p}}{2}\left(C \sigma_{\perp \perp^{\prime}}\right)_{\beta \alpha}\left(\bar{N}^{-} \gamma_{5} \sigma^{\perp \perp^{\prime}}\right)_{\gamma}\right\}
\end{aligned}
$$

TABLE I: Twist classification of proton distribution amplitudes.

	twist-3	twist-4	twist-5	twist-6
Vector	V_{1}	V_{2}, V_{3}	V_{4}, V_{5}	V_{6}
Pseudo-Vector	A_{1}	A_{2}, A_{3}	A_{4}, A_{5}	A_{6}
Tensor	T_{1}	T_{2}, T_{3}, T_{7}	T_{4}, T_{5}, T_{8}	T_{6}
Scalar		S_{1}	S_{2}	
Pesudo-Scalar	P_{1}	P_{2}		

$\Lambda_{b} \rightarrow p$ form factors in PQCD

- Result of form factor f_{1}

Two-body non-leptonic Λ_{b} decays

- $\Lambda_{b} \rightarrow p \pi^{-}, p \rho^{-}, p a_{1}(1260), p K^{-}, p K^{*-}, p K_{1}(1270), p K_{1}(1400)$

Λ_{b}

Λ_{b}

Λ_{b}

Λ_{b}

Λ_{b}

Two-body non-leptonic Λ_{b} decays

- Kinematics

$$
q=\left(\frac{M_{\Lambda_{b}}}{\sqrt{2}}\left(1-\eta_{1}\right), \frac{M_{\Lambda_{b}}}{\sqrt{2}}\left(1-\eta_{2}\right), \mathbf{0}_{T}\right) \quad p=\left(\frac{M_{\Lambda_{b}}}{\sqrt{2}}, \frac{M_{\Lambda_{b}}}{\sqrt{2}}, \mathbf{0}_{T}\right) \quad p^{\prime}=\left(\frac{M_{\Lambda_{b}}}{\sqrt{2}} \eta_{1}, \frac{M_{\Lambda_{b}}}{\sqrt{2}} \eta_{2}, \mathbf{0}_{T}\right)
$$

$$
\begin{array}{rlrl}
q_{1}=\left(0, y q^{-}, \mathbf{k}_{q}\right) & k_{1} & =\left(p^{+}, x_{1} p^{-}, \mathbf{k}_{1 T}\right) & k_{1}^{\prime}=\left(x_{1}^{\prime} p^{\prime+}, 0, \mathbf{k}_{1 T}^{\prime}\right) \\
q_{2}=\left(0,(1-y) q^{-},-\mathbf{k}_{q}\right) & k_{2} & =\left(0, x_{2} p^{-}, \mathbf{k}_{2 T}\right) & k_{2}^{\prime}=\left(x_{2}^{\prime} p^{\prime+}, 0, \mathbf{k}_{2 T}^{\prime}\right) \\
k_{3} & =\left(0, x_{3} p^{-}, \mathbf{k}_{3 T}\right) & k_{3}^{\prime}=\left(x_{3}^{\prime} p^{\prime+}, 0, \mathbf{k}_{3 T}^{\prime}\right) \\
& \eta_{1}=\left(M_{\Lambda_{b}}^{2}-M_{\mathcal{M}}^{2}+M_{p}^{2}+\sqrt{\left(-M_{\Lambda_{b}}^{2}+M_{\mathcal{M}}^{2}-M_{p}^{2}\right)^{2}-4 M_{\Lambda_{b}}^{2} M_{p}^{2}}\right) /\left(2 M_{\Lambda_{b}}^{2}\right) \\
\eta_{2}=\left(M_{\Lambda_{b}}^{2}-M_{\mathcal{M}}^{2}+M_{p}^{2}-\sqrt{\left(-M_{\Lambda_{b}}^{2}+M_{\mathcal{M}}^{2}-M_{p}^{2}\right)^{2}-4 M_{\Lambda_{b}}^{2} M_{p}^{2}}\right) /\left(2 M_{\Lambda_{b}}^{2}\right)
\end{array}
$$

- PQCD formula for two-body decays
$F_{i}\left(q^{2}\right) \sim \int_{0}^{1} d[x] d\left[x^{\prime}\right] d y \int d^{2}[b] d^{2}\left[b^{\prime}\right] d b_{y} \phi_{\Lambda_{b}}([x],[b], \mu) \cdot H\left([x],\left[x^{\prime}\right], y,[b],\left[b^{\prime}\right], b_{y}, \mu\right) C_{i}(\mu) \cdot \phi_{p}\left(\left[x^{\prime}\right],\left[b^{\prime}\right], \mu\right) \phi_{y}\left(y, b_{y}, \mu\right) \cdot \Pi_{i} S\left(x_{i}, b_{i}\right) S_{i}\left(x_{i}\right)$

Two-body non-leptonic Λ_{b} decays

- LCDAs for meson

$$
\begin{aligned}
& \Phi_{\pi}(p, x, \zeta) \equiv \frac{\imath}{\sqrt{2 N_{C}}} \gamma_{5}\left[\not p \phi_{\pi}^{A}(x)+m_{0}^{\pi} \phi_{\pi}^{P}(x)+\zeta m_{0}^{\pi}\left(\not p \eta^{\prime}-1\right) \phi_{\pi}^{T}(x)\right] . \\
& \phi_{\pi(K)}^{A}(x)= \frac{f_{\pi(K)}}{2 \sqrt{2 N_{c}}} 6 x(1-x)\left[1+a_{1}^{\pi(K)} C_{1}^{3 / 2}(2 x-1)+a_{2}^{\pi(K)} C_{2}^{3 / 2}(2 x-1)\right. \\
&\left.+a_{4}^{\pi(K)} C_{4}^{3 / 2}(2 x-1)\right], \\
& \phi_{\pi(K)}^{P}(x)= \frac{f_{\pi(K)}}{2 \sqrt{2 N_{c}}}\left[1+\left(30 \eta_{3}-\frac{5}{2} \rho_{\pi(K)}^{2}\right) C_{2}^{1 / 2}(2 x-1)\right. \\
&\left.-3\left\{\eta_{3} \omega_{3}+\frac{9}{20} \rho_{\pi(K)}^{2}\left(1+6 a_{2}^{\pi(K)}\right)\right\} C_{4}^{1 / 2}(2 x-1)\right], \\
& \phi_{\pi(K)}^{T}(x)= \frac{f_{\pi(K)}^{2 \sqrt{2 N_{c}}}(1-2 x)[1}{} \\
&\left.+6\left(5 \eta_{3}-\frac{1}{2} \eta_{3} \omega_{3}-\frac{7}{20} \rho_{\pi(K)}^{2}-\frac{3}{5} \rho_{\pi(K)}^{2} a_{2}^{\pi(K)}\right)\left(1-10 x+10 x^{2}\right)\right] \\
& C_{1}^{3 / 2}(t)= 3 t, \\
& C_{2}^{1 / 2}(t)= \frac{1}{2}\left(3 t^{2}-1\right), \quad C_{2}^{3 / 2}(t)=\frac{3}{2}\left(5 t^{2}-1\right), \\
& C_{4}^{1 / 2}(t)= \frac{1}{8}\left(3-30 t^{2}+35 t^{4}\right), \quad C_{4}^{3 / 2}(t)=\frac{15}{8}\left(1-14 t^{2}+21 t^{4}\right) . \\
& a_{1}^{\pi}=0, \quad a_{2}^{\pi, K}=0.25 \pm 0.15, \quad a_{4}^{\pi}=-0.015, \quad a_{1}^{K}=0.06, \\
& \rho_{\pi}= m_{\pi} / m_{0}^{\pi}, \quad \rho_{K}=m_{K} / m_{0}^{K}, \quad \eta_{3}^{\pi, K, \eta}=0.015, \quad \omega_{3}^{\pi, K, \eta}=-3, \\
& m_{0}^{\pi}=1.4 \pm 0.1 \mathrm{GeV}, \quad m_{0}^{K}=1.6 \pm 0.1 \mathrm{GeV} \quad \rho_{\pi(K)}=m_{\pi(K)} / m_{0}^{\pi(K)}
\end{aligned}
$$

- The 18th W-exchange diagram, contribution from leading-twist LCDAs for S-wave

$$
\begin{aligned}
f_{1}^{E_{18}}= & G_{F} \frac{\pi^{2}}{54 \sqrt{3}} f_{\Lambda_{b}} f_{p} \int[d x] \int\left[d x^{\prime}\right] \int d y\left[\alpha_{s}\left(t^{E_{18}}\right)\right]^{2} \psi_{\Lambda_{b}}(x) \\
\times\{ & \left\{16 m_{0} M_{\Lambda_{b}}^{4}\left[\left(C_{1}-C_{2}\right) V_{u b} V_{u d}^{*}+\left(\left(C_{3}+C_{9}\right)-\left(C_{4}+C_{10}\right)\right) V_{t b} V_{t d}^{*}\right](y-1)\left(\phi_{M}^{P}(y)+\phi_{M}^{T}(y)\right)\right. \\
& \left.+16 m_{0} M_{\Lambda_{b}}^{4}\left(\left(C_{5}+C_{7}\right)-\left(C_{6}+C_{8}\right)\right) V_{t b} V_{t d}^{*}(y-1)\left(\phi_{M}^{P}(y)+\phi_{M}^{T}(y)\right)\right] \psi_{p}^{V}\left(x^{\prime}\right) \\
& +\left[16 m_{0} M_{\Lambda_{b}}^{4}\left[\left(C_{1}-C_{2}\right) V_{u b} V_{u d}^{*}+\left(\left(C_{3}+C_{9}\right)-\left(C_{4}+C_{10}\right)\right) V_{t b} V_{t d}^{*}\right](y-1)\left(\phi_{M}^{P}(y)+\phi_{M}^{T}(y)\right)\right. \\
& \left.\left.-16 m_{0} M_{\Lambda_{b}}^{4}\left(\left(C_{5}+C_{7}\right)-\left(C_{6}+C_{8}\right)\right) V_{t b} V_{t d}^{*}(y-1)\left(\phi_{M}^{P}(y)+\phi_{M}^{T}(y)\right)\right] \psi_{p}^{A}\left(x^{\prime}\right)\right\} \\
\times & \frac{1}{16 \pi^{2}} \int b_{2} d b_{2} \int b_{3} d b_{3} \int b_{q} d b_{q} \int d \theta_{1} \int d \theta_{2} \exp \left[-S^{E_{18}}\left(x, x^{\prime}, y, b, b^{\prime}, b_{q}\right)\right] \\
& \left\{K _ { 0 } \left(\sqrt{\left.\left.C^{E_{18}}\left|b_{2}^{\prime}\right|\right) \theta\left(C^{E_{18}}\right)+\frac{\pi i}{2}\left[J_{0}\left(\sqrt{\left|C^{E_{18}}\right|\left|b_{2}^{\prime}\right|} \mid\right)+i N_{0}\left(\sqrt{\left|C^{E_{18}}\right|\left|b_{2}^{\prime}\right|} \mid\right)\right] \theta\left(-C^{E_{18}}\right)\right\} \int_{0}^{1} \frac{d z_{1} d z_{2}}{z_{1}\left(1-z_{1}\right)}}\right.\right.
\end{aligned}
$$

$$
\sqrt{\frac{X_{2}^{E_{18}}}{\left|Z_{2}^{E_{18}}\right|}}\left\{K_{1}\left(\sqrt{X_{2}^{E_{18}} Z_{2}^{E_{18}}}\right) \Theta\left(Z_{2}^{E_{18}}\right)+\frac{\pi}{2}\left[J_{1}\left(\sqrt{X_{2}^{E_{18}}\left|Z_{2}^{E_{18}}\right|}\right)+i N_{1}\left(\sqrt{\left.\left.\left.X_{2}^{E_{18}}\left|Z_{2}^{E_{18}}\right|\right)\right] \Theta\left(-Z_{2}^{E_{18}}\right)\right\}, \text {, }, \text {. }}\right.\right.\right.
$$

6-dimensional integration

$$
\text { sample }=\gtrsim 10^{5}
$$

12-dimensional integration sample $\gtrsim 10^{10}$

Summary

- Heavy baryon physics play important roles
- PQCD approach is powerful to explain and predict measurements
- But we still have a long way to realize

OSudakov factor in k_{T} space; OThreshold Sudakov factor; Ofactorization; O......

backup

- Numerical integration, VEGAS, Parallel computing, GPU-accelerated
(base) PS C:\Users\ZaynH\Desktop\Lb2pK> conda activate mytorch (mytorch) PS C:\Users\ZaynH\Desktop\Lb2pK> python . \test.py resultEII7SwaveReal tensor(0.9127) resultEII7SwaveImag tensor (0.5339) resultEII7PwaveReal tensor(-0.2512) resultEII7PwaveImag tensor(-0.7203) sample=3~T
(mytorch) PS C:\Users\ZaynH\Desktop\Lb2pK> python . \test.py resultEII7SwaveReal tensor(-2.7334)
resulteII7SwaveImag tensor(1.6898)
resultEII7PwaveReal tensor(-0.8296)
resultEII7PwaveImag tensor(1.4193)

GPU

\checkmark Video Encode


```
(mytorch) PS C:\Users\ZaynH\Desktop\Lb2pK> python .\test.py
resultEII7SwaveReal tensor(0.2935)
resultEII7SwaveImag tensor(1.9887)
resultEII7PwaveReal tensor(-1.0786)
sample=31T
resultEII7PwaveImag tensor(2.7952)
(mytorch) PS C:\Users\ZaynH\Desktop\Lb2pK> python .\test.py
resultEII7SwaveReal tensor(-1.7840)
resultEII7SwaveImag tensor(2.0037)
resultEII7PwaveReal tensor(0.7348)
resultEII7PwaveImag tensor(-1.3421)
(mytorch) PS C:\Users\ZaynH\Desktop\Lb2pK>
```

- PQCD approach (based on k_{T} factorization): retain transverse momentum of parton k_{T}

Opropagator $\sim \frac{1}{x_{1} x_{2} Q^{2}+\left|k_{i T}\right|^{2}}$

$$
\mathscr{A}=\left\langle M_{2} M_{3}\right| \mathscr{H}|B\rangle
$$

$\sim \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{d^{4} k_{3}}{(2 \pi)^{4}} \Psi_{B}\left(k_{1}, \mu\right) \Psi_{2}\left(k_{2}, \mu\right) \Psi_{3}\left(k_{3}, \mu\right) \cdot H\left(k_{1}, k_{2}, k_{3}, \mu\right) C_{i}(\mu)$

after Fourier tramsform
$\sim \int_{0}^{1} d x_{1} d x_{2} d x_{3} \int d^{2} b_{1} d^{2} b_{2} d^{2} b_{3} \phi_{B}\left(x_{1}, b_{1}, \mu\right) \phi_{2}\left(x_{2}, b_{2}, \mu\right) \phi_{3}\left(x_{3}, b_{3}, \mu\right) \cdot H\left(x_{1}, x_{2}, x_{3}, b_{1}, b_{2}, b_{3}, \mu\right) C_{i}(\mu) \times \Pi_{i} S\left(x_{i}, b_{i}\right) \times S_{t}\left(x_{i}\right)$

Two-body non-leptonic Λ_{b} decays

- Kinematics

$$
\begin{aligned}
& q=\left(\frac{M_{\Lambda_{b}}}{\sqrt{2}}\left(1-\eta_{1}\right), \frac{M_{\Lambda_{b}}}{\sqrt{2}}\left(1-\eta_{2}\right), \mathbf{0}_{T}\right) \quad p=\left(\frac{M_{\Lambda_{b}}}{\sqrt{2}}, \frac{M_{\Lambda_{b}}}{\sqrt{2}}, \mathbf{0}_{T}\right) \quad p^{\prime}=\left(\frac{M_{\Lambda_{b}}}{\sqrt{2}} \eta_{1}, \frac{M_{\Lambda_{b}}}{\sqrt{2}} \eta_{2}, \mathbf{0}_{T}\right) \\
& \longrightarrow \longrightarrow \\
& \vec{v} \xrightarrow{\pi^{-} / K^{-}} \longleftrightarrow \begin{array}{l}
k_{1}=\left(\left(1-x_{3}\right) p^{+},\left(1-x_{2}\right) p^{-}, k_{1 T}\right) \\
k_{2}=\left(0, x_{2} p^{-}, k_{2 T}\right) \\
k_{3}=\left(x_{3} p^{+}, 0, k_{3 T}\right)
\end{array} \quad p \begin{array}{l}
\longrightarrow
\end{array} \vec{n} \\
& q_{1}=\left(0, y q^{-}, \mathbf{k}_{q}\right) \\
& q_{2}=\left(0,(1-y) q^{-},-\mathbf{k}_{q}\right) \\
& \begin{array}{ll}
k_{1}=\left(p^{+}, x_{1} p^{-}, \mathbf{k}_{1 T}\right) & k_{1}^{\prime}=\left(x_{1}^{\prime} p^{\prime+}, 0, \mathbf{k}_{1 T}^{\prime}\right) \\
k_{2}=\left(0, x_{2} p^{-}, \mathbf{k}_{2 T}\right) & k_{2}^{\prime}=\left(x_{2}^{\prime} p^{\prime+}, 0, \mathbf{k}_{2 T}^{\prime}\right) \\
k_{3}=\left(0, x_{3} p^{-}, \mathbf{k}_{3 T}\right) & k_{3}^{\prime}=\left(x_{3}^{\prime} p^{\prime+}, 0, \mathbf{k}_{3 T}^{\prime}\right)
\end{array} \\
& \eta_{1}=\left(M_{\Lambda_{b}}^{2}-M_{\mathcal{M}}^{2}+M_{p}^{2}+\sqrt{\left(-M_{\Lambda_{b}}^{2}+M_{\mathcal{M}}^{2}-M_{p}^{2}\right)^{2}-4 M_{\Lambda_{b}}^{2} M_{p}^{2}}\right) /\left(2 M_{\Lambda_{b}}^{2}\right) \\
& \eta_{2}=\left(M_{\Lambda_{b}}^{2}-M_{\mathcal{M}}^{2}+M_{p}^{2}-\sqrt{\left(-M_{\Lambda_{b}}^{2}+M_{\mathcal{M}}^{2}-M_{p}^{2}\right)^{2}-4 M_{\Lambda_{b}}^{2} M_{p}^{2}}\right) /\left(2 M_{\Lambda_{b}}^{2}\right)
\end{aligned}
$$

- PQCD formula for two-body decays
$F_{i}\left(q^{2}\right) \sim \int_{0}^{1} d[x] d\left[x^{\prime}\right] d y \int d^{2}[b] d^{2}\left[b^{\prime}\right] d b_{y} \phi_{\Lambda_{b}}([x],[b], \mu) \cdot H\left([x],\left[x^{\prime}\right], y,[b],\left[b^{\prime}\right], b_{y}, \mu\right) C_{i}(\mu) \cdot \phi_{p}\left(\left[x^{\prime}\right],\left[b^{\prime}\right], \mu\right) \phi_{M}\left(y, b_{y}, \mu\right) \cdot \Pi_{i} S\left(x_{i}, b_{i}\right) S_{i}\left(x_{i}\right)$
－Bessel functions

12－dimensional integration sample $\gtrsim 10^{10}$

Plot［\｛Re［BesselK［0，x］］，Im［Besselk［0，x］］\}, \{x, -1, 1\}] ！绘图 $\lfloor\cdots$ … 第二类修正贝塞尔函数 $\lfloor\cdots$ 第二类修正贝塞尔函数

Plot［\｛Re［HankelH1［1，x］］，Im［HankelH1［1，x］］\}, \{x, -30, 30\}]绘图［… 第一类汉克尔函数 lan^{2}［．．第一类汉克尔函数

1－dimensional integration

$$
\text { sample } 5 \sim 6
$$

Plot［\｛Re［BesselK［1，x］］，Im［BesselK［0，x］］\}, \{x, -1, 1\}] ！绘图 $\left\lfloor\cdots{ }^{\circ}\right.$ 第二类修正贝塞尔函数 $\lfloor\cdots$ 第二类修正贝塞尔函数

- PQCD approach (based on k_{T} factorization): retain transverse momentum of parton k_{T}

Opropagator $\sim \frac{1}{x_{1} x_{2} Q^{2}+\left|k_{i T}\right|^{2}}$

$$
\mathscr{A}=\left\langle M_{2} M_{3}\right| \mathscr{H}|B\rangle
$$

$$
\sim \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{d^{4} k_{3}}{(2 \pi)^{4}} \Psi_{B}\left(k_{1}, \mu\right) \Psi_{2}\left(k_{2}, \mu\right) \Psi_{3}\left(k_{3}, \mu\right) \cdot H\left(k_{1}, k_{2}, k_{3}, \mu\right) C_{i}(\mu)
$$

$\sim \int_{0}^{1} d x_{2} d x_{2} d x_{3} \int \frac{d^{2} k_{1 T}}{(2 \pi)^{2}} \frac{d^{2} k_{2 T}}{(2 \pi)^{2}} \frac{d^{2} k_{3 T}}{(2 \pi)^{2}} \phi_{B}\left(x_{1}, k_{1 T}, \mu\right) \phi_{2}\left(x_{2}, k_{2 T}, \mu\right) \phi_{3}\left(x_{3}, k_{3 T}, \mu\right) \cdot H\left(x_{1}, x_{2}, x_{3}, k_{1 T}, k_{2 T}, k_{3 T}, \mu\right) C_{i}(\mu)$

$$
\begin{aligned}
H\left(x_{i}, b_{i}\right) & \sim \int \frac{d^{2} k_{1 T}}{(2 \pi)^{2}} \frac{d^{2} k_{3 T}}{(2 \pi)^{2}} \frac{N_{1}\left(x_{1}, x_{1}, k_{1} T\right.}{} e^{i b \cdot k_{3} T} \frac{\left.x_{3}\right)}{x_{1} x_{3} M_{B}^{2}-\left|k_{1 T}-k_{3 T}\right|^{2}} \frac{N_{2}\left(x_{1}, x_{2}, x_{3}\right)}{M_{B}^{2}\left(1-x_{3}\right)-\left|k_{3}\right|^{2}} \\
& \left.\sim N_{1}\left(x_{1}, x_{2}, x_{3}\right) N_{2}\left(x_{1}, x_{2}, x_{3}\right) \cdot\left[K_{0}\left(\sqrt{x_{1} x_{3} M_{B}^{2}} b_{1}\right) l_{0}\left(\sqrt{\left(1-x_{3}\right) M_{B}^{2}} b_{3}\right) K_{0}\left(\sqrt{\left(1-x_{3}\right) M_{B}^{2}} b_{1}\right) \Theta\left(b_{3}-b_{1}\right)+K_{0}\left(\sqrt{x_{1} x_{3} M_{B}^{2}} b_{1}\right)\right)_{0}\left(\sqrt{\left(1-x_{3}\right) M_{B}^{2}} b_{1}\right) K_{0}\left(\sqrt{\left(1-x_{3}\right) M_{B}^{2}} b_{3}\right) \Theta\left(b_{1}-b_{3}\right)\right]
\end{aligned}
$$

after Fourier tramsform

$\leq \int_{0}^{1} d x_{1} d x_{2} d x_{3} \int d^{2} b_{1} d^{2} b_{2} d^{2} b_{3} \phi_{B}\left(x_{1}, b_{1}, \mu\right) \phi_{2}\left(x_{2}, b_{2}, \mu\right) \phi_{3}\left(x_{3}, b_{3}, \mu\right) \cdot H\left(x_{1}, x_{2}, x_{3}, b_{1}, b_{2}, b_{3}, \mu\right) C_{i}(\mu) \times \Pi_{i} S\left(x_{i}, b_{i}\right) \times S_{t}\left(x_{i}\right)$

after resum double-log term

$\sim \int_{0}^{1} d x_{2} d x_{2} d x_{3} \int \frac{d^{2} k_{1 T}}{(2 \pi)^{2}} \frac{d^{2} k_{2 T}}{(2 \pi)^{2}} \frac{d^{2} k_{3 T}}{(2 \pi)^{2}} \phi_{B}\left(x_{1}, k_{1 T}, \mu\right) \phi_{2}\left(x_{2}, k_{2 T}, \mu\right) \phi_{3}\left(x_{3}, k_{3 T}, \mu\right) \cdot H\left(x_{1}, x_{2}, x_{3}, k_{1 T}, k_{2 T}, k_{3 T}, \mu\right) C_{i}(\mu) \times \Pi_{i} S\left(x_{i}, k_{i T}\right)$

Determine $S\left(Q, k_{i T}\right)$ from $S\left(Q, b_{i}\right)$

$S\left(Q, b_{i}, \alpha, \beta, \ldots\right)=\int \frac{d^{2} k_{T}}{(2 \pi)^{2}} e^{i b \cdot k_{T}} S\left(Q, k_{T}, \alpha, \beta, \ldots\right)$

$S\left(Q, k_{T}\right)=\gamma(Q) \cdot \operatorname{Exp}\left[-\alpha(Q) \ln ^{2}\left(\frac{\ln \left(Q / \Lambda_{Q C D}\right.}{\ln \left(k_{T} / \Lambda_{Q C D}\right.}\right)+\beta(Q) \ln \left(\frac{\ln \left(Q / \Lambda_{Q C D}^{4}\right.}{\ln \left(k_{T} / \Lambda_{Q C D}\right.}\right)\right]$

$$
S\left(Q, k_{T}\right) \rightarrow 0 \quad \text { when } k_{T} \rightarrow 0 \text { or } \infty
$$

