

Highlights of Recent Charm Results @ LHCb

Liang Sun Wuhan University 2023/12/17

全国第二十届重味物理和CP破坏研讨会, 复旦大学

Outline

- Experimental details
- Charm mixing & CPV
- Direct CPV in multi-body charm decays
- Rare charm decays
- Prospects & outlook

Up-to-date LHCb charm results can be found at <u>https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary_Charm.html</u> More than 90 papers and counting!

LHCb as a charm factory

- LHCb acceptance: $2 < \eta < 5$ (forward region)
- Large production cross-section

 $\sigma(pp \rightarrow c \bar{c}) = (2369 \pm 3 \pm 152 \pm 118) \mu b @ 13 TeV \sim 20 \times \sigma(pp \rightarrow b\bar{b}X)$

[IHEP 03 (2016) 159]

- More than 1 billion $D^0 \rightarrow K^-\pi^+$ collected by LHCb between 2011 and 2018
- Run2: Turbo stream from online reconstruction • [Comput. Phys. Commun. 208 (2016) 35]

Charm mixing & CPV

- Charm mixing a well-established fact:
 - Mass eigenstates are related to their flavor eigenstates via $|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|D^0\rangle$, with $|q|^2 + |p|^2 \equiv 1$
 - Mixing parameters based on the mass and width differences: $x \equiv (m_2 - m_1)/\Gamma$, $y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$, with $\Gamma \equiv (\Gamma_2 + \Gamma_1)/2$
- CP violation contributions:
 - In decays: amplitudes for a process and its conjugate differ

D^o production at LHCb

D° flavor tagging at LHCb

[PRL 131 (2023) 091802]

LHCb

 $5.7\,{\rm fb}^{-1}$

Run2

2005

 $N \sim 70M$

2010

LHCb combination, 8.7 fb

LHCb combination, 3.0 fb
 + No direct CPV

-0.002

-0.004

 $A_{CP}(\pi^+\pi^-) = A(K^+K^-) - \Delta A_{CP}$

MeV 1400

nd n

0.000

0.004

0.002

0.002

-0.004

Editors' Suggestion

 $D^0 \rightarrow K^- K^+$

Data

Comb. bkg.

2015

0.002

 $m(D^0\pi^+)$ [MeV/ c^2]

LHCb

0.004

 $a^d_{K^-K^+}$

Fit

CPV in $D^0 \rightarrow K^+ K^- / \pi^+ \pi^-$

- Using Run 2 (5.6 fb⁻¹) data with ~70M D⁰→ K⁺K⁻ candidates
 Combination of two methods using Cabibbo-
- Combination of two methods using Cabibbofavored (no CPV) $D^0/D^+/D_s^+$ decays to cancel detector/production asymmetries in $D^0 \rightarrow K^+K^-$:

 $A_{CP}(K^+K^-) = [6.8 \pm 5.4(\text{stat}) \pm 1.6(\text{sys}))] \times 10^{-4}$

• Combination with Run1 & ΔA_{CP} results yields: $a^d_{CP}(K^+K^-) = [7.7 \pm 5.7] \times 10^{-4}$ $a^d_{CP}(\pi^+\pi^-) = [23.2 \pm 6.1] \times 10^{-4}$ $\rho(a^d_{KK}, a^d_{\pi\pi}) = 88\%$

First evidence (3.8 σ) of CPV in $D^0
ightarrow \pi^+ \pi^-!$

[PRL 127 (2021) 111801] [PRD 108 (2023) 052005]

$D^0 - \overline{D}{}^0$ oscillation in $D^0 \rightarrow K^0_S \pi^+ \pi^-$

- Run2 prompt (SL) datasets with ~31M (3.7M) candidates
- Bin-flip method: model-independent approach, no need for modeling of Dalitz-plot efficiency & decay amplitudes

Simultaneous fit of the yield ratio R_b^{\pm} (\pm for initial D^0/\overline{D}^0) between $\pm b$ and -b in bins of D^0 decay time t:

 $R_b^{\pm}(t) \approx r_b - \sqrt{r_b} [(1-r_b)c_b \mathbf{y} - (1+r_b)s_b \mathbf{x}] \Gamma t$

• $r_b \equiv R_b(t=0)$

Absolute bin index

 c_b and s_b : parameters related to the strong phase differences between $\pm b$ regions (based on external inputs from <u>CLEO</u> and <u>BESIII</u>).

[PRL 127 (2021) 111801]

$D^0 - \overline{D}^0$ oscillation in $D^0 \rightarrow K^0_S \pi^+ \pi^-$

World Averages significantly improved!

[PRL 127 (2021) 111801] [PRD 108 (2023) 052005]

$D^0 - \overline{D}^0$ oscillation in $D^0 \rightarrow K^0_{\varsigma} \pi^+ \pi^-$

2

 $x_{CP} = [4.01 \pm 0.45(\text{stat}) \pm 0.20(\text{syst})] \times 10^{-3},$ $y_{CP} = [5.51 \pm 1.16(\text{stat}) \pm 0.59(\text{syst})] \times 10^{-3},$ $\Delta x = [-0.29 \pm 0.18(\text{stat}) \pm 0.01(\text{syst})] \times 10^{-3},$ $\Delta y = [0.31 \pm 0.35(\text{stat}) \pm 0.13(\text{syst})] \times 10^{-3}.$ $x = (4.01 \pm 0.49) \times 10^{-3},$ $y = (5.5 \pm 1.3) \times 10^{-3},$ $|q/p| = 1.012^{+0.050}_{-0.048}$ $\phi = -0.061^{+0.037}_{-0.044}$ rad. LHCb LHCb HCb Prompt $D^0 \to K_s^0 \pi^+ \pi^+$ bin-flip HCb Prompt $D^0 \to K^0_s \pi^+ \pi^+$ bin-flip $5.4 \, \text{fb}^{-1}$ LHCb SL $D^0 \to K^0_S \pi^+ \pi^+$ bin-flip LHCb SL $D^0 \to K^0_S \pi^+ \pi^+$ bin-flip 5.4 fb^{-1} LHCb $D^0 \to K_c^0 \pi^+ \pi^+$ bin-flip LHCb $D^0 \to K_s^0 \pi^+ \pi^+$ bin-flip 0.02 0.01 -0.5contours hold 68%, 95% CI contours hold 68%, 95% CL 0.005 0.01 0.5 0 1.5 |q/p| - 1x

World Averages significantly improved!

Direct CPV in 3-body D decays

- In multi-body decays, strong phase δ vary across the phase space
- Locally enhanced CPV effects possible due to interference
 - Already observed in chameless 3-body B⁺ decays by LHCb [see e.g. PRD 108 (2023) 012008]
- Recent model-independent searches for direct CPV on Dalitzplot planes of:
 - $D^+_{(s)} \rightarrow K^- K^+ K^+$ [JHEP 07 (2023) 067]
 - $D^0 \rightarrow \pi^+ \pi^- \pi^0$ [JHEP 09 (2023) 129]
 - $D^0 \to K^0_S K^{\pm} \pi^{\mp}$ [arXiv:2310.19397]

All dominated by CS/DCS amplitudes

Direct CPV in $D^+_{(s)} \rightarrow K^- K^+ K^+_{s^{60}} K^+$

- Run 2 (5.6 fb⁻¹) data
- Binned method:

 $S_{CP}^{i} = \frac{N_{+}^{i} - \alpha N_{-}^{i}}{\sqrt{\alpha(\delta_{N_{+}^{i}}^{2} + \delta_{N_{-}^{i}}^{2})}} \qquad \alpha = \frac{\sum N_{+}^{i}}{\sum N_{-}^{i}}$ Global asymmetry

• S_{CP}^{i} follows standard normal distribution if no CPV

exclude CP conservation if $p < 3 \times 10^{-7}$ (Ndof=Nbins(21)-1)

- Validation with CF decays $D_s^+ \rightarrow K^- K^+ \pi^+$ and $D^+ \rightarrow K^- \pi^+ \pi^+$
- Measured p-values 13.3% (31.6%) for $\mathrm{D}_{\mathrm{s}}^{+}$ (D+) decays

Direct CPV in $D^+_{(s)} \rightarrow K^- K^+_{S^{(0)}} K^+_{S^{(0)}$

- Run 2 (5.6 fb⁻¹) data
- Binned method:

 $S_{CP}^{i} = \frac{N_{+}^{i} - \alpha N_{-}^{i}}{\sqrt{\alpha(\delta_{N_{+}^{i}}^{2} + \delta_{N_{-}^{i}}^{2})}} \qquad \alpha = \frac{\sum N_{+}^{i}}{\sum N_{-}^{i}}$ Global asymmetry

• S_{CP}^{i} follows standard normal distribution if no CPV

exclude CP conservation if $p < 3 \times 10^{-7}$ (Ndof=Nbins(21)-1)

- Validation with CF decays $D_s^+ \rightarrow K^- K^+ \pi^+$ and $D^+ \rightarrow K^- \pi^+ \pi^+$
- Measured p-values 13.3% (31.6%) for $\mathrm{D}_{\mathrm{s}}^{+}$ (D+) decays

[JHEP 09 (2023) 129]

14

Direct CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^0$

- Dominated by $D^0 \rightarrow \rho^{\pm} \pi^{\mp}$ amplitudes
 - Could be related to recent evidence of CPV in $D^0 \rightarrow \pi^+\pi^-$
- Run 2 (6 fb⁻¹) data with D⁰ from D^{*+} and tagged by π_{s}^{+}
- Unbinned energy test method by comparing weighted distance between pairs in phase space:

- Null hypothesis from permulations of T-values with randomized tags
- Validation with CF decay $D^0 \rightarrow K^- \pi^+ \pi^0$
- Measured p-value 62%: no hint for CPV!

Direct CPV in $D^0 \rightarrow K^0_S K^{\pm} \pi^{\mp}$

- Dominated by SCS amplitudes including $D^0 \rightarrow K^{*\mp} K^{\pm}/K^{*0} K_S^0$
- Run 2 (5.4 fb⁻¹) data with D⁰ from D^{*+} and tagged by π_s^+
- Unbinned energy test method as in $D^0 {\rightarrow} \pi^+ \pi^- \pi^0$
- Control modes: $D^0 \rightarrow K^- \pi^+ \pi^- \pi^- / K_S^0 \pi^+ \pi^-$
- Measured p-values 70% (66%) for $D^0 \rightarrow K_S^0 K^- \pi^+$ ($D^0 \rightarrow K_S^0 K^+ \pi^+$): no hint for CPV!

Hadronic decays with π^0/η

No CPV found Almost all are world's best!

Overview of rare charm decays @ LHCb

Search for $D^0 \rightarrow \mu^+ \mu^-$

FCNC & helicity suppression

• Predictions:
$$\mathcal{B}^{s.d.}(D^0 \to \mu^+ \mu^-) \sim 10^{-18}$$

 $\mathcal{B}^{(\gamma\gamma)}(D^0 \to \mu^+ \mu^-) < 2.3 \times 10^{-11}$

- Full Run1+2 analysis (9 fb⁻¹), D^0 from prompt $D^{*+} \rightarrow D^0 \pi^+_{tag}$
- Normalization channel: $\mathcal{B}(D^0 \to \mu^+ \mu^-) = \alpha N_{D^0 \to \mu^+ \mu^-}, \quad \alpha \sim \frac{\mathcal{B}(D^0 \to h^- \pi^+)}{N_{D^0 \to h^- \pi^+}} \frac{\varepsilon_{D^0 \to h^- \pi^+}}{\varepsilon_{D^0 \to \mu^+ \mu^-}} \sim 2 \times 10^{-11}$
- 2D simultaneous fits in 3 BDT bins per run:

Peaking mostly from π/μ misID

Final result:

 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 2.9(3.3) \times 10^{-9}$ at 90(95)% C.L.

Search for $D^{*0} \rightarrow \mu^+ \mu^-$ in B decay

- Leptonic D* decays offer a complementary approach to constraining Wilson coefficients
- Highly suppressed in SM: BF $\sim 10^{-18}$
- Search in the decay chain of $B^- \rightarrow D^{*0} (\rightarrow \mu^+ \mu^-) \pi^-$
- Normalization channel: $B^- \to J/\psi (\to \mu^+ \mu^-) K^- \overset{\sim}{\mathbb{R}}$

 $\varepsilon_{J/\psi K^-}/\varepsilon_{D^{*0}\pi^-}$

 $N_{J/\psi K^-}$

 1.21 ± 0.03

 $(2316 \pm 8) \times 10^3$

First search:

 $\mathcal{B}(D^{*0}\!\rightarrow\mu^+\mu^-)<2.6\times10^{-8}$ at 90% CL

PRL 128 (2022) 221801

CPV & angular analysis of $D^0 \rightarrow hh\mu^+\mu^-$

- Rarest charm meson decays observed, dominated by resonant contributions
- First full angular analysis with 9 fb⁻¹ data
- D^0 selected from flavor specific $D^{*+} \rightarrow D^0 \pi^+$

LHCb $9 \, \text{fb}^{-1}$ All results 0.2 $D^0 \overrightarrow{e}_{hh}$ consistent with SM n e uu \overrightarrow{e}_{h^+} No CPV found -0.2-0.4 $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ -0.6500 1000 1500 $m(\mu^{+}\mu^{-})$ [MeV/c²] $A_{CP} = \frac{\Gamma(D^{0} \to h^{+}h^{-}\mu^{+}\mu^{-}) - \Gamma(\overline{D}^{0} \to h^{+}h^{-}\mu^{+}\mu^{-})}{\Gamma(D^{0} \to h^{+}h^{-}\mu^{+}\mu^{-}) + \Gamma(\overline{D}^{0} \to h^{+}h^{-}\mu^{+}\mu^{-})}$ $p^2 = m^2(h^+h^-)$ $q^2 = m^2(\mu^+\mu^-)$

Run3 and beyond...

Rare decays

Mixing & CPV						Mode	Upgrade (50 fb $^{-1}$)	Upgrade II (300 $\mathrm{fb}^{-1})$
						$D^0 o \mu^+ \mu^-$	$4.2 imes10^{-10}$	$1.3 imes10^{-10}$
Observable	Current LHCb	Upgrade I		Upgrade II		$D^+ ightarrow \pi^+ \mu^+ \mu^-$	10^{-8}	$3 imes 10^{-9}$
Charm	$(up to 9 fb^{-1})$	$(23 {\rm fb}^{-1})$	$(50{\rm fb}^{-1})$	$(300{ m fb}^{-1})$	Limits on BFs	$D_s^+ ightarrow K^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$\frac{\Box nam}{\Delta A_{CP}} \left(D^0 \to K^+ K^-, \pi^+ \pi^- \right)$	$29 imes 10^{-5}$ [5]	17×10^{-5}		$3.0 imes 10^{-5}$		$\Lambda_c^+ o p \mu^+ \mu^-$	$1.1 imes10^{-8}$	$4.4 imes10^{-9}$
$A_{\Gamma} (D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$	$13 imes 10^{-5}$ [38]	$4.3 imes 10^{-5}$		$1.0 imes 10^{-5}$		$D^0 o e \mu$	10 ⁻⁹	$4.1 imes10^{-9}$
$\Delta x \ (D^0 ightarrow K^0_{ m s} \pi^+ \pi^-)$	18×10^{-5} [37]	$6.3 imes 10^{-5}$	4.1×10^{-5}	$1.6 imes 10^{-5}$	8	$D^+ ightarrow \pi^+ \mu^+ \mu^-$	0.2%	0.08%
					Stat. precision on asymmetries	$D^0 o \pi^+\pi^-\mu^+\mu^-$	1%	0.4%
Reaching for sub-10-4				$D^0 o \pi^+ K^- \mu^+ \mu^-$		0.3%	0.13%	
precision						$D^0 ightarrow K^+ \pi^- \mu^+ \mu^-$	12%	5%
						$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	4%	1.7%

A new detector & no hw drigger: expecting benefits to A_{CP} measurements in hadronic channels, esp. for those with at least one K_S

21

Summary

- LHCb is in fact a charm factory and has the world's largest sample of charm decays
- High statistics and superb detector performance allow for high precision measurements on charm CP, rare decays, etc.
 - Observations of charm CPV, difference in D⁰ mass eigenstates, etc.
- Still more charm results in the pipeline with full Run1+2 data, stay tuned!
 - For example, semileptonic D⁰ decays, dielectron channels, radiative charm decays, charm baryons, ...
- Run3 for LHCb has started, expecting fruitful years to come...
- Synergy across different experiments on charm physics: BESIII, BELLE(II), future STCF, ...

Backup Slides