CP violation in charmed baryon decays with SU(3) flavor symmetry

arXiv: 2310.05491, 2312.xxxxx 全国第二十届重味物理和CP破坏研讨会

劉佳韋

TDLI

Dec 17, 2023

• Charmed baryons decays

BESIII : $e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$ at 4.6 GeV, providing clean background

Observation of the Singly Cabibbo Suppressed Decay $\Lambda_c^+ o n\pi^+$

M. Ablikim *et al.* (BESIII Collaboration) Phys. Rev. Lett. **128**, 142001 – Published 4 April 2022

Belle : e^+e^- collisions at $\Upsilon(4S)$ or $\Upsilon(5S)$

Article

Search for *CP* violation and measurement of branching fractions and decay asymmetry parameters for $\Lambda_c^+ \to \Lambda h^+$ and $\Lambda_c^+ \to \Sigma^0 h^+$ ($h = K, \pi$) The Belle Collaboration¹

LHCb : pp collisions, largest charmed hadron samples

Observation of the Doubly Charmed Baryon Ξ_{cc}^{++}

R. Aaij *et al.* (LHCb Collaboration) Phys. Rev. Lett. **119**, 112001 – Published 11 September 2017

Physics See Viewpoint: A Doubly Charming Particle

ELSEVIER

Measurement of the lifetimes of promptly produced Ω_c^0 and Ξ_c^0 baryons

LHCb Collaboration¹

CP violation in charm - overview

$$V_{
m CKM} = egin{bmatrix} V_{
m ud} & V_{
m us} & V_{
m ub} \ V_{
m cd} & V_{
m cs} & V_{
m cb} \ V_{
m td} & V_{
m ts} & V_{
m tb} \end{bmatrix}$$

$V_{CKM} \neq V_{CKM}^*$ under the phase rotations of $(U_q(1))^6 \rightarrow CP$ violation.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

 $b \rightarrow d$

• **CP** violation in charm - overview

$$V_{
m CKM} = egin{bmatrix} V_{
m ud} & V_{
m us} & V_{
m ub} \ V_{
m cd} & V_{
m cs} & V_{
m cb} \ V_{
m td} & V_{
m ts} & V_{
m tb} \end{bmatrix}$$

$V_{CKM} \neq V^*_{CKM}$ under the phase rotations of $(U_q(1))^6 \rightarrow \text{CP}$ violation.

 $V_{\rm CKM}V_{\rm CKM}^{\dagger} = 1$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

SU(3) flavor analysis $\lambda_{d,s}$ Tree + λ_b Penguin

Insensitive to CP-even quantities & undetermined

 $\lambda_q = V^*_{cq} V_{uq}$ Pole model + Rescattering $\lambda_{d,s}$ Tree + λ_b Tree X (Penguin / Tree)

Determined by the PM + rescattering

$$\mathcal{M} = \langle \mathbf{B}M; t \to \infty | \mathcal{H}_{eff} | \mathbf{B}_c \rangle = i\overline{u} (F - C)$$

SU(3) flavor representations :

$$\mathscr{H}_{eff} = \frac{G_F}{\sqrt{2}} \left[\sum_{qq'} V_{qc}^* V_{q'u} \left(C_+ O_+^{qq'} + C_- O_-^{qq'} \right) - \lambda_b \sum_{i=3\sim 6} C_i O_i \right] \qquad \qquad \lambda_q = V_{cq}^* V_{uq}$$

 $O_{+}^{qq'} = (\overline{u}q')_{V-A}(\overline{q}c)_{V-A} \pm (\overline{q}q')_{V-A}(\overline{u}c)_{V-A}$

$$-A \qquad \underbrace{\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{\overline{3}}}_{\mathscr{H}_{eff}} = \underbrace{(\mathbf{15} \oplus \mathbf{3}_{+})}_{O_{+}} \oplus \underbrace{(\mathbf{\overline{6}} \oplus \mathbf{3}_{-})}_{O_{-}}$$

$$\mathbf{3}_{-} = \lambda_b \left(-\frac{1}{2}, 0, 0 \right) , \ \mathcal{H}(\mathbf{3}_{+}) = \lambda_b \left(-\frac{1}{4}, 0, 0 \right) ,$$

$$\begin{array}{c} \frac{\lambda_b}{4} & V_{cs}^* V_{ud} \\ & 0 \\ & 0 \\ & 0 \end{array} \right)_{ij} \left(\begin{array}{ccc} 0 & V_{cd}^* V_{us} & \lambda_s + \frac{\lambda_b}{4} \\ V_{cd}^* V_{us} & 0 & 0 \\ & \lambda_s + \frac{\lambda_b}{4} & 0 & 0 \end{array} \right)_{ij} \right)_k$$

$$\lambda_d + \lambda_s + \lambda_b = 0$$

Cabibbo-suppressed decays $(c \rightarrow u)$

$$\mathscr{H}_{eff} = \frac{G_F}{\sqrt{2}} \left[\sum_{qq'} V_{qc}^* V_{q'u} \left(C_+ O_+^{qq'} + C_- O_-^{qq'} \right) - \lambda_b \sum_{i=3\sim 6} C_i O_i \right] \qquad \langle \mathbf{B}P \,|\, \mathscr{H}_{eff} \,|\, \mathbf{B}_c \rangle = i \overline{u} \left(F - G \gamma_s \right) + i \overline{u} \left(F$$

$$O_{\pm}^{qq'} = (\overline{u}q')_{V-A}(\overline{q}c)_{V-A} \pm (\overline{q}q')_{V-A}(\overline{u}c)_{V-A} \qquad \underbrace{3 \otimes 3 \otimes \overline{3}}_{\mathscr{H}_{eff}} = \underbrace{(15 \oplus 3_{+})}_{O_{+}} \oplus \underbrace{(\overline{6} \oplus 3_{+})}_{O_{-}} \oplus \underbrace{(\overline{6} \oplus 3_{+})}_{O_{+}} \oplus \underbrace{(\overline{6} \oplus$$

$$\mathcal{M} = a_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_j^{\{ik\}} (\overline{T_8})_k^j P_l^l + b_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_i^{\{jk\}} (\overline{T_8})_k^j P_k^i + b_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_l^{\{jk\}} (\overline{T_8})_j^l P_k^i + b_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_l^{\{ik\}} (\overline{T_8})_k^j P_k^j + b_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_k^j P_k^j + b_{15} \times (T_{c\bar{3}})_i^j P_k^j + b_$$

To date, there are in total **30** data points but $9 \times 2(S-\& P-waves) \times 2(complex) - 1 = 35$

 $H_{\overline{15}}_{i}^{\{ik\}}(\overline{T_{8}})_{k}^{l}P_{l}^{j} + c_{15} \times (T_{c\bar{3}})_{i}(H_{\overline{15}})_{i}^{\{ik\}}(\overline{T_{8}})_{l}^{j}P_{k}^{l}$ $(H_{\overline{15}})_{l}^{\{jk\}}(\overline{T_{8}})_{j}^{i}P_{k}^{l} + a_{6} \times (T_{c\bar{3}})^{[ik]}(H_{\bar{6}})_{\{ij\}}(\overline{T_{8}})_{k}^{j}P_{l}^{l}$ ${}^{kl]}(H_{\bar{6}})_{\{ij\}}(\overline{T_8})^j_l P^l_k + d_6 \times (T_{c\bar{3}})^{[ik]}(H_{\bar{6}})_{\{ij\}}(\overline{T_8})^i_k P^j_l.$

$$\mathscr{H}_{eff} = \frac{G_F}{\sqrt{2}} \left[\sum_{qq'} V_{qc}^* V_{q'u} \left(C_+ O_+^{qq'} + C_- O_-^{qq'} \right) - \lambda_b \sum_{i=3\sim 6} C_i O_i \right] \qquad \langle \mathbf{B}P \,|\, \mathscr{H}_{eff} \,|\, \mathbf{B}_c \rangle = i \overline{u} \left(F - G \gamma_e \right) + i \overline{u} \left(F$$

$$O_{\pm}^{qq'} = (\overline{u}q')_{V-A}(\overline{q}c)_{V-A} \pm (\overline{q}q')_{V-A}(\overline{u}c)_{V-A} \qquad \underbrace{3 \otimes 3 \otimes \overline{3}}_{\mathscr{K}_{eff}} = \underbrace{(15 \oplus 3_{+})}_{O_{+}} \oplus \underbrace{(\overline{6} \oplus 3_{+})}_{O_{-}} \oplus \underbrace{(\overline{6} \oplus 3_{+})}_{O_{+}} \oplus \underbrace{(\overline{6} \oplus$$

$$\mathcal{M} = a_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_j^{\{ik\}} (\overline{T_8})_k^j P_l^l + b_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_i^{\{jk\}} (\overline{T_8})_k^j P_k^i + b_{15} \times (T_{c\bar{3}})_i^j (H_{\overline{15}})_i^{\{jk\}} (\overline{T_8})_j^l P_k^i + b_{15} \times (T_{c\bar{3}})_i^j (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_k^j P_k^j + b_{15} \times (T_{c\bar{3}})_i^j (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_k^j P_k^j + b_{15} \times (T_{c\bar{3}})_i^j (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_k^j P_k^j + b_{15} \times (T_{c\bar{3}})_i^j (H_{\overline{15}})_i^j (H_{\overline{15}})_i^j (\overline{T_8})_k^j P_k^j P_k^j + b_{15} \times (T_{c\bar{3}})_i^j (H_{\overline{15}})_i^j (H_{\overline{15}})_i^j (\overline{T_8})_k^j P_k^j P_k^j + b_{15} \times (T_{c\bar{3}})_i^j (H_{\overline{15}})_i^j (H_{\overline{15}})_i^j (H_{\overline{15}})_i^j (\overline{T_8})_k^j P_k^j P_k^j + b_{15} \times (T_{c\bar{3}})_i^j (H_{\overline{15}})_i^j (H_{\overline{15}}$$

To date, there are in total 30 data points but $9 \times 2(S-\& P-waves) \times \frac{2(complex)}{2} = 35$ In the absence of final state interactions $\rightarrow 18$

Phys. Lett. B 794, 19-28 (2019) JHEP 02, 235 (2023) Phys. Rev. D 108, no.5, 053004 (2023)

 $H_{\overline{15}}_{i}^{\{ik\}}(\overline{T_8})_{k}^{l}P_{l}^{j} + c_{15} \times (T_{c\bar{3}})_{i}(H_{\overline{15}})_{i}^{\{ik\}}(\overline{T_8})_{l}^{j}P_{k}^{l}$ $P_i(H_{\overline{15}})_l^{\{jk\}}(\overline{T_8})_i^i P_k^l + a_6 \times (T_{c\bar{3}})^{[ik]}(H_{\bar{6}})_{\{ij\}}(\overline{T_8})_k^j P_l^l$ ${}^{kl]}(H_{\bar{6}})_{\{ij\}}(\overline{T_8})^j_l P^l_k + d_6 \times (T_{c\bar{3}})^{[ik]}(H_{\bar{6}})_{\{ij\}}(\overline{T_8})^i_k P^j_l.$

$$\alpha \left(\Lambda_c^+ \to \Xi^0 K^+ \right) = \qquad 0.94^{+0.06}_{-0.11}$$

First Measurement of the Decay Asymmetry of pure W-exchange Decay $\Lambda_c^+ \to \Xi^0 K^+$ (Dated: **September 8, 2023**)

 $\delta_p - \delta_s = -1.55 \pm 0.25$ (stat.) ± 0.05 (syst.) rad.

To date, there are in total 30 data points but $9 \times 2(S-\& P-waves) \times \frac{2(complex)}{2} = 35$

(2019) 16 input, (2023) 28 input, (2023) 28 input, 10 parameters* 18 parameters 18 parameters $0.91^{+0.03}_{-0.04}$ 0.955 ± 0.018

Based on 4.4 fb⁻¹ of e^+e^- annihilation data collected at the center-of-mass energies between 4.60 and 4.70 GeV with the BESIII detector at the BEPCII collider, the pure W-exchange decay $\Lambda_c^+ \rightarrow \Lambda_c^+$ $\Xi^0 K^+$ is studied with a full angular analysis. The corresponding decay asymmetry is measured for the first time to be $\alpha_{\Xi^0 K^+} = 0.01 \pm 0.16$ (stat.) ± 0.03 (syst.). This result reflects the interference between the S- and P-wave amplitudes. The phase shift between S- and P-wave amplitudes is

In the absence of final state interactions \rightarrow **18**

Phys. Lett. B 794, 19-28 (2019) JHEP 02, 235 (2023) Phys. Rev. D 108, no.5, 053004 (2023)

(2019) 16 input, 10 parameters*

$$\alpha \left(\Lambda_c^+ \to \Xi^0 K^+ \right) = \qquad 0.94^{+0.06}_{-0.11}$$

• Free parameters: $18 \rightarrow 10$

 $A_{(\mathbf{B}_c \to \mathbf{B}_n M)} =$ $a_0 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^j_k (M)^l_l + a_1 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^l_k (M)^j_l + a_2 H(6)_{ij} (\mathbf{B}'_c)^{ik} (M)^l_k (\mathbf{B}_n)^j_l + a_2 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}'_n)^j_l + a_2 H(6)_{ij} ($ $a_{3}H(6)_{ij}(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{j}(\mathbf{B}_{c}^{\prime})^{kl} + a_{0}^{\prime}(\mathbf{B}_{n})_{j}^{i}(M)_{l}^{l}H(\overline{15})_{i}^{jk}(\mathbf{B}_{c})_{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{c})_{j}(M)_{i}^{j}(\mathbf{B}_{n})_{l}^{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{c})_{j}(M)_{i}^{j}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{c})_{j}(M)_{i}^{j}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{c})_{j}(M)_{i}^{j}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{n})_{i}^{k}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{i}^{li}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{i}^{li}(\mathbf{B}_{n})_{i}^{li}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{i}^{li}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{i}^{li}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{i}^{li}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{i}^{li}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{i}^{li}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{i}^{li}(\mathbf{B}_{n})_$ $a_{5}(\mathbf{B}_{n})_{j}^{i}(M)_{i}^{l}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k} + a_{6}(\mathbf{B}_{n})_{i}^{j}(M)_{l}^{m}H(\overline{15})_{m}^{li}(\mathbf{B}_{c})_{j} + a_{7}(\mathbf{B}_{n})_{i}^{l}(M)_{j}^{i}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k},$

PLB 794, 19(2019)

 $\mathscr{B}(\Lambda_c^+ \to \Sigma^0 K^+) = \mathscr{B}(\Lambda_c^+ \to \Sigma^+ K_{\mathrm{S}}^0)$ EXP(2022): $(4.7 \pm 1.0) \times 10^{-4}$ $(4.8 \pm 1.4) \times 10^{-4}$ BESIII PRD 106, no.5, 052003 (2022)

$$\alpha \left(\Lambda_c^+ \to \Xi^0 K^+ \right) = \qquad 0.94^{+0.06}_{-0.11}$$

First Measurement of the Decay Asymmetry of pure W-exchange Decay $\Lambda_c^+ \to \Xi^0 K^+$ (Dated: **September 8, 2023**)

 $\delta_p - \delta_s = -1.55 \pm 0.25 (\text{stat.}) \pm 0.05 (\text{syst.}) \text{ rad.}$

To date, there are in total 30 data points but $5 \times 2(S-\& P-waves) \times \frac{2(complex)}{1} = 35$

Considering the Körner-Pati-Woo theorem: \rightarrow **10**

Phys. Lett. B 794, 19-28 (2019) JHEP 02, 235 (2023) Phys. Rev. D 108, no.5, 053004 (2023)

(2019) 16 input, (2023) 28 input, (2023) 28 input, 10 parameters^{*} 18 parameters 18 parameters $0.91^{+0.03}_{-0.04}$

 0.955 ± 0.018

Based on 4.4 fb⁻¹ of e^+e^- annihilation data collected at the center-of-mass energies between 4.60 and 4.70 GeV with the BESIII detector at the BEPCII collider, the pure W-exchange decay $\Lambda_c^+ \rightarrow \Lambda_c^+$ $\Xi^0 K^+$ is studied with a full angular analysis. The corresponding decay asymmetry is measured for the first time to be $\alpha_{\Xi^0 K^+} = 0.01 \pm 0.16$ (stat.) ± 0.03 (syst.). This result reflects the interference between the S- and P-wave amplitudes. The phase shift between S- and P-wave amplitudes is

$$\alpha \left(\Lambda_c^+ \to \Xi^0 K^+ \right) = -0.15 \pm 0.1$$

First Measurement of the Decay Asymmetry of pure W-exchange Decay $\Lambda_c^+ \to \Xi^0 K^+$ (Dated: **September 8, 2023**)

 $\delta_p - \delta_s = -1.55 \pm 0.25 (\text{stat.}) \pm 0.05 (\text{syst.}) \text{ rad.}$

To date, there are in total **30** data points but $5 \times 2(S-\& P-waves) \times 2(complex) - 1 = 35$

Considering the Körner-Pati-Woo theorem: \rightarrow **19**

(2023) 29 input, (2023) 28 input, (2023) 28 input, 19 parameters* 18 parameters 18 parameters $0.91^{+0.03}_{-0.04}$ 0.955 ± 0.018 4

Based on 4.4 fb⁻¹ of e^+e^- annihilation data collected at the center-of-mass energies between 4.60 and 4.70 GeV with the BESIII detector at the BEPCII collider, the pure W-exchange decay $\Lambda_c^+ \rightarrow \Lambda_c^+$ $\Xi^0 K^+$ is studied with a full angular analysis. The corresponding decay asymmetry is measured for the first time to be $\alpha_{\Xi^0 K^+} = 0.01 \pm 0.16$ (stat.) ± 0.03 (syst.). This result reflects the interference between the S- and P-wave amplitudes. The phase shift between S- and P-wave amplitudes is

arXiv:2310.05491 [hep-ph] JHEP 02, 235 (2023) Phys. Rev. D 108, no.5, 053004 (2023)

• SU(3) flavor analysis — Tree

- Sizable strong phases
- KPW + SU(3)

$$\frac{\tau_{\Lambda_c^+}}{\tau_{\Xi_c^0}} \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+) + 3\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+) - \frac{1}{s_c^2} \mathcal{B}(\Lambda_c^+ \to n\pi^+)$$

 $\beta = \frac{2 \operatorname{Im} (S^* P)}{|S|^2 + |P|^2}$

$\mathcal{B}_{ ext{exp}}(\%)$	$lpha_{ m exp}$	$\mathcal{B}(\%)$	lpha	eta
1.59(8)	*0.18(45)	1.55(7)	-0.40(49)	0.32(29)
1.30(6)	-0.755(6)	1.29(5)	-0.75(1)	-0.13(19)
1.27(6)	-0.466(18)	1.27(5)	-0.47(2)	0.88(2)
1.25(10)	-0.48(3)	1.27(5)	-0.47(2)	0.88(2)
**0.55(7)	0.01(16)	0.40(3)	-0.15(14)	-0.29(22)
0.064(3)	-0.585(52)	0.063(3)	-0.56(5)	0.82(5)
0.0382(25)	-0.54(20)	0.0365(21)	-0.52(10)	0.48(24)
0.066(13)		0.067(8)	-0.78(12)	-0.63(15)
0.048(14)		0.036(2)	-0.52(10)	0.48(24)
< 0.008		0.02(1)		-0.82(32)
0.32(4)	-0.99(6)	0.32(4)	-0.93(4)	-0.32(16)
0.142(12)		0.145(26)	-0.42(61)	0.64(40)
0.437(84)	-0.46(7)	0.420(70)	-0.44(25)	0.86(6)
0.0484(91)		0.0520(114)	-0.59(9)	0.76(14)
1.6(8)		0.90(16)	-0.94(6)	0.32(21)
****1.43(32)	* - 0.64(5)	2.72(9)	-0.71(3)	0.36(20)
$\mathcal{R}_X^{\mathrm{exp}}$	$lpha_{ m exp}$	\mathcal{R}_X	lpha	eta
0.225(13)		0.233(9)	-0.47(29)	0.66(20)
**0.0275(57)		0.0410(4)	-0.75(4)	0.38(20)
0.038(7)		0.038(7)	-0.07(117)	-0.83(28)
0.123(12)		0.132(11)	-0.21(18)	-0.39(29)
	$\mathcal{B}_{exp}(\%)$ 1.59(8) 1.30(6) 1.27(6) 1.25(10) **0.55(7) 0.064(3) 0.064(3) 0.0382(25) 0.066(13) 0.048(14) < 0.008 0.32(4) 0.142(12) 0.437(84) 0.142(12) 0.437(84) 0.0484(91) 1.6(8) *****1.43(32) \mathcal{R}_X^{exp} 0.225(13) **0.0275(57) 0.038(7) 0.123(12)	$\mathcal{B}_{exp}(\%)$ α_{exp} 1.59(8)*0.18(45)1.30(6) $-0.755(6)$ 1.27(6) $-0.466(18)$ 1.25(10) $-0.48(3)$ **0.55(7) $0.01(16)$ $0.064(3)$ $-0.585(52)$ $0.0382(25)$ $-0.54(20)$ $0.066(13)$ $-0.54(20)$ $0.066(13)$ $-0.99(6)$ $0.048(14)$ $-0.99(6)$ $0.142(12)$ $-0.46(7)$ $0.437(84)$ $-0.46(7)$ $0.0484(91)$ $-0.64(5)$ $1.6(8)$ $****1.43(32)$ $*=0.0275(57)$ α_{exp} $0.038(7)$ $-0.123(12)$	$\mathcal{B}_{exp}(\%)$ α_{exp} $\mathcal{B}(\%)$ 1.59(8)*0.18(45)1.55(7)1.30(6) $-0.755(6)$ 1.29(5)1.27(6) $-0.466(18)$ 1.27(5)1.25(10) $-0.48(3)$ 1.27(5)**0.55(7)0.01(16)0.40(3)0.064(3) $-0.585(52)$ 0.063(3)0.0382(25) $-0.54(20)$ 0.0365(21)0.066(13) $-0.585(52)$ 0.063(3)0.048(14) $0.036(2)$ < 0.008	$\begin{array}{ c c c c c } \hline \mathcal{B}_{exp}(\%) & \alpha_{exp} & \mathcal{B}(\%) & \alpha \\ \hline 1.59(8) & {}^*0.18(45) & 1.55(7) & -0.40(49) \\ \hline 1.30(6) & -0.755(6) & 1.29(5) & -0.75(1) \\ \hline 1.27(6) & -0.466(18) & 1.27(5) & -0.47(2) \\ \hline 1.25(10) & -0.48(3) & 1.27(5) & -0.47(2) \\ \hline **0.55(7) & 0.01(16) & 0.40(3) & -0.15(14) \\ \hline 0.064(3) & -0.585(52) & 0.063(3) & -0.56(5) \\ \hline 0.0382(25) & -0.54(20) & 0.0365(21) & -0.52(10) \\ \hline 0.066(13) & & 0.067(8) & -0.78(12) \\ \hline 0.048(14) & & 0.036(2) & -0.52(10) \\ < 0.008 & & 0.02(1) \\ \hline 0.32(4) & -0.99(6) & 0.32(4) & -0.93(4) \\ \hline 0.142(12) & & 0.145(26) & -0.42(61) \\ \hline 0.437(84) & -0.46(7) & 0.420(70) & -0.44(25) \\ \hline 0.0484(91) & & 0.0520(114) & -0.59(9) \\ \hline 1.6(8) & & 0.90(16) & -0.94(6) \\ \hline ****1.43(32) & {}^*-0.64(5) & 2.72(9) & -0.71(3) \\ \hline \mathcal{R}_{X}^{exp} & \alpha_{exp} & \mathcal{R}_X & \alpha \\ \hline 0.225(13) & & 0.233(9) & -0.47(29) \\ \hline **0.0275(57) & 0.0410(4) & -0.75(4) \\ \hline 0.038(7) & 0.038(7) & -0.07(117) \\ \hline 0.123(12) & & 0.132(11) & -0.21(18) \\ \hline \end{array}$

$> 4\sigma$ PDG $(1.43 \pm 0.32)\%$ SU(3) $< 2\sigma$ (2.72 ± 0.09)% Belle $(1.80 \pm 0.52)\%$ $\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (2.38 \pm 0.44) \%$ LQCD, CPC 46, 011002 (2022) $\frac{\mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+)}{\mathscr{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e)} = 1.37 \pm 0.08$ Belle, PRL 127 121803 (2021)

 $\mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+) = (3.26 \pm 0.63)\%$

arXiv:2310.05491 [hep-ph]

 $\beta = \frac{2 \operatorname{Im} (S^*P)}{|S|^2 + |P|^2}$

Channels	$\mathcal{B}_{ ext{exp}}(\%)$	$lpha_{ ext{exp}}$	$\mathcal{B}(\%)$	lpha	eta
$\Lambda_c^+ \to p K_S$	1.59(8)	*0.18(45)	1.55(7)	-0.40(49)	0.32(29)
$\Lambda_c^+\to\Lambda^0\pi^+$	1.30(6)	-0.755(6)	1.29(5)	-0.75(1)	-0.13(19)
$\Lambda_c^+ \to \Sigma^0 \pi^+$	1.27(6)	-0.466(18)	1.27(5)	-0.47(2)	0.88(2)
$\Lambda_c^+\to \Sigma^+\pi^0$	1.25(10)	-0.48(3)	1.27(5)	-0.47(2)	0.88(2)
$\Lambda_c^+\to \Xi^0 K^+$	**0.55(7)	0.01(16)	0.40(3)	-0.15(14)	-0.29(22)
$\Lambda_c^+\to\Lambda^0 K^+$	0.064(3)	-0.585(52)	0.063(3)	-0.56(5)	0.82(5)
$\Lambda_c^+ \to \Sigma^0 K^+$	0.0382(25)	-0.54(20)	0.0365(21)	-0.52(10)	0.48(24)
$\Lambda_c^+ \to n\pi^+$	0.066(13)		0.067(8)	-0.78(12)	-0.63(15)
$\Lambda_c^+ \to \Sigma^+ K_S$	0.048(14)		0.036(2)	-0.52(10)	0.48(24)
$\Lambda_c^+ o p \pi^0$	< 0.008		0.02(1)		-0.82(32)
$\Lambda_c^+\to \Sigma^+\eta$	0.32(4)	-0.99(6)	0.32(4)	-0.93(4)	-0.32(16)
$\Lambda_c^+ \to p\eta$	0.142(12)		0.145(26)	-0.42(61)	0.64(40)
$\Lambda_c^+\to \Sigma^+\eta'$	0.437(84)	-0.46(7)	0.420(70)	-0.44(25)	0.86(6)
$\Lambda_c^+ \to p \eta'$	0.0484(91)		0.0520(114)	-0.59(9)	0.76(14)
$\Xi_c^+ \to \Xi^0 \pi^+$	1.6(8)		0.90(16)	-0.94(6)	0.32(21)
$\Xi_c^0 \to \Xi^- \pi^+$	****1.43(32)	* - 0.64(5)	2.72(9)	-0.71(3)	0.36(20)
Channels	$\mathcal{R}_X^{ ext{exp}}$	$lpha_{ m exp}$	\mathcal{R}_X	lpha	eta
$\Xi_c^0 o \Lambda^0 K_S$	0.225(13)		0.233(9)	-0.47(29)	0.66(20)
$\Xi_c^0\to \Xi^- K^+$	**0.0275(57)		0.0410(4)	-0.75(4)	0.38(20)
$\Xi_c^0 \to \Sigma^0 K_S$	0.038(7)		0.038(7)	-0.07(117)	-0.83(28)
$\Xi_c^0 \to \Sigma^+ K^-$	0.123(12)		0.132(11)	-0.21(18)	-0.39(29)

$$F = \tilde{f}^{a} (P^{\dagger})^{l}_{l} \mathcal{H}(\overline{\mathbf{6}})_{ij} (\mathbf{B}_{c})^{ik} (\mathbf{B}^{\dagger})^{j}_{k} + \tilde{f}^{b} \mathcal{H}(\overline{\mathbf{6}})_{ij} (\mathbf{B}_{c})^{ik} (\mathbf{B}^{\dagger})^{j}_{k} (\mathbf{B}_{c})^{kl} + \tilde{f}^{e} (\mathbf{B}^{\dagger})^{j}_{i} (\mathbf{B}^{\dagger})^{j}_{i}$$

CP-odd quantities $\sim 10^{-4}$

$$a_{D \to K^+ K^-}^{\text{dir}} - a_{D \to \pi^+ \pi^-}^{\text{dir}} = (-1.57 \pm 0.29) \times 1$$

arXiv:2312.xxxx [hep-ph]

 $(\mathbf{B}_c)^{ik} (\mathbf{B}^{\dagger})^l_k (P^{\dagger})^j_l + \tilde{f}^c \mathcal{H}(\overline{\mathbf{6}})_{ij} (\mathbf{B}_c)^{ik} (P^{\dagger})^l_k (\mathbf{B}^{\dagger})^j_l$

$\mathcal{H}(15)^{\{ik\}}_l(P^\dagger)$	$)^l_k(\mathbf{B}_c)_j$	$+ \lambda_b \mathcal{H}(3) ,$

Channels	$\mathcal{B}(10^{-3})$	$\alpha_{CP}(10^{-3})$	$\beta_{CP}(10^{-3})$	$\gamma_{CP}(10^{-3})$	$A_{CP}^{dir}(10^{-3})$
$\Lambda_c^+ \to p \pi^0$	0.16(2)	-0.61(39)	-0.43(48)	0.53(145)	0.01(1)
$\Lambda_c^+ \to p\eta$	1.45(25)	0.05(17)	0.04(14)	-0.07(22)	-0.03(4)
$\Lambda_c^+ \to p \eta'$	0.52(11)	-0.02(7)	0.01(4)	0.00(4)	0.00(1)
$\Lambda_c^+ \to n\pi^+$	0.67(8)	0.12(20)	0.13(26)	-0.28(40)	-0.01(2)
$\Lambda_c^+ \to \Lambda^0 K^+$	0.63(2)	-0.03(10)	0.03(5)	0.04(24)	0.01(1)
$\Xi_c^+\to \Sigma^+\pi^0$	2.11(14)	0.06(13)	-0.01(13)	-0.09(42)	-0.07(7)
$\Xi_c^+\to \Sigma^+\eta$	0.70(32)	-0.10(22)	0.09(73)	0.29(57)	0.01(4)
$\Xi_c^+\to \Sigma^+\eta'$	1.13(23)	0.03(7)	-0.01(2)	-0.01(4)	-0.01(0)
$\Xi_c^+\to \Sigma^0\pi^+$	3.04(11)	-0.01(6)	-0.01(11)	0.05(21)	0.05(5)
$\Xi_c^+\to \Xi^0 K^+$	1.04(13)	0.02(14)	0.13(18)	-0.18(25)	-0.02(2)
$\Xi_c^+ \to \Lambda^0 \pi^+$	0.32(9)	0.0(19)	0.36(30)	0.20(19)	0.00(1)
$\Xi_c^0\to \Sigma^0\pi^0$	0.34(2)	-0.04(12)	0.25(39)	0.12(12)	0.00(1)
$\Xi_c^0\to \Sigma^0\eta$	0.12(5)	-0.11(22)	0.09(73)	0.29(57)	0.00(1)
$\Xi_c^0\to \Sigma^0\eta'$	0.19(4)	0.03(7)	-0.01(2)	-0.01(4)	0.00(1)
$\Xi_c^0\to \Sigma^-\pi^+$	1.83(6)	0.02(7)	-0.09(21)	0.03(12)	0.02(3)
$\Xi_c^0\to \Xi^- K^+$	1.12(3)	0.02(5)	-0.08(16)	0.02(11)	0.01(1)
$\Xi_c^0\to\Lambda^0\pi^0$	0.09(1)	0.07(20)	-0.27(25)	-0.15(17)	0.00(1)
$\Xi_c^0\to\Lambda^0\eta$	0.43(11)	0.06(12)	0.11(14)	-0.01(2)	-0.01(1)
$\Xi_c^0\to\Lambda^0\eta^\prime$	0.68(13)	0.00(1)	0.00(1)	0.00(1)	0.00(1)

 0^{-3}

SU(3) flavor analysis $\lambda_{d,s}$ Tree + λ_b Penguin

Insensitive to CP-even quantities & undetermined

 $\lambda_q = V^*_{cq} V_{uq}$ Pole model + Rescattering $\lambda_{d,s}$ Tree + λ_b Tree X (Penguin / Tree)

Determined by the PM + rescattering

"Hence, it is plausible to assume that PE is of the same order of magnitude as E. We took PE =E."

Pole model + Rescattering — Penguin / Tree b - loop is absent!

$$F_{s}^{\text{pole}} = \frac{\tilde{E}_{s}^{-}}{f_{P}} \Biggl\{ \frac{1}{\sqrt{2}} \mathcal{H}(\overline{\mathbf{6}})_{kl} (\mathbf{B}_{c})^{[ki]} \left((P^{\dagger})_{n}^{l} (\mathbf{B}^{\dagger})_{i}^{n} + g_{s}^{-} (P^{\dagger})_{i}^{n} (\mathbf{B}^{\dagger})_{n}^{l} \right) - \lambda_{b} \frac{7 - 2g_{s}^{-}}{2 + 8g_{s}^{-}} \Biggl[(\mathbf{B}_{c})_{i} \mathcal{H}(\overline{\mathbf{3}})^{k} \left((P^{\dagger})_{j}^{i} (\mathbf{B}^{\dagger})_{k}^{j} + g_{s}^{-} (P^{\dagger})_{k}^{j} (\mathbf{B}^{\dagger})_{j}^{i} \right) - \frac{1 + g_{s}^{-}}{3} (\mathbf{B}_{c})_{i} \mathcal{H}(\mathbf{3}_{-})^{i} (P^{\dagger})_{k}^{j} (\mathbf{B}^{\dagger})_{k}^{j} \Biggr]$$

Ratio between $3\&\overline{6}$ is determined

 $CP \propto \overline{6} \times 3$

$$a_{\mathbf{B}_{I}\mathbf{B}_{c}}^{RE} \propto \sum_{\mathbf{B}',P'} \underbrace{\left((\mathbf{B}_{c})_{i}\mathcal{H}_{l}^{jk}(\mathbf{B}'^{\dagger})_{j}^{i}(P'^{\dagger})_{k}^{l} \right)}_{\text{Weak; } \mathbf{B}_{c} \to \mathbf{B}'P'} \underbrace{\left(P' \right)_{m}^{o} \left(g_{12}^{s\pm}(\mathbf{B}')_{n}^{m}(\mathbf{B}_{I}^{\dagger})_{o}^{n} + g_{21}^{s\pm}(\mathbf{B}_{I}^{\dagger})_{j}^{s} \right)}_{\text{Strong; } \mathbf{B}'P' \to \mathbf{B}_{I}} = \left(\frac{8}{3}g_{21}^{s\pm} + \frac{2}{3}g_{12}^{s\pm} \right) \left(\frac{1}{\sqrt{2}} (\mathbf{B}_{c})^{[lj]}\mathcal{H}(\overline{\mathbf{6}})_{kl} (\mathbf{B}_{I}^{\dagger})_{j}^{k} - \lambda_{b} \frac{7 - 2g_{s}^{\pm}}{2 + 8g_{s}^{\pm}} (\mathbf{B}_{c})_{i}\mathcal{H}(\mathbf{3}_{-})^{k} (\mathbf{B}_{c})_{i} \mathcal{H}(\mathbf{3}_{-})^{k} (\mathbf{B}_{c})_{i}\mathcal{H}(\mathbf{3}_{-})^{k} (\mathbf{A}_{c})_{i}\mathcal{H}(\mathbf{3}_{-})^{k} (\mathbf{A}_{c})_{i}\mathcal{H}(\mathbf{3}_{-})^{k} (\mathbf{A}_{c$$

, becomes complex if $M_{\mathbf{B}_c} > M_{\mathbf{B}'} + M_{P'}$

Completeness relation: $\sum (\lambda_8)^i_j (\lambda_8^{\dagger})^k_l = \delta^i_l \delta^k_j - \frac{1}{3} \delta^i_j \delta^k_l$

Preliminary results

a — Penauin / Tree	Channels	$\mathcal{B}_{ ext{exp}}(\%)$	$lpha_{ m exp}$	$\mathcal{B}(\%)$	α	eta	
3	$\Lambda_c^+ \to p K_S$	1.59(8)	$0.18(50)^*$	1.55(6)	-0.76(2)	-0.11(3)	0
	$\Lambda_c^+\to\Lambda\pi^+$	$1.30(6)^{*}$	-0.755(6)	1.23(5)	-0.75(1)	-0.13(9)	0
	$\Lambda_c^+\to \Sigma^0\pi^+$	1.27(6)	-0.466(18)	1.31(5)	-0.47(2)	0.01(5)	0
$\sim P$	$\Lambda_a^+ \to \Sigma^+ \pi^0$	1.25(10)	-0.48(3)	1.31(5)	-0.47(2)	0.01(5)	0
	$\Lambda_c^+\to \Xi^0 K^+$	$0.55(7)^{*}$	$0.01(16)^{**}$	0.45(3)	-0.31(11)	-0.29(7)	0
$\mathbf{B}^{u}_{\mathbf{r}}$ B	$\Lambda_c^+ \to \Lambda K^+$	0.064(3)	-0.585(52)	0.062(3)	-0.55(5)	0.10(10)	0
	$\Lambda_c^+ \to \Sigma^0 K^+$	$0.0382(25)^*$	-0.54(20)	0.0347(22)	-0.61(4)	-0.04(4)	0
	$\Lambda_c^+ \to n\pi^+$	0.066(13)		0.058(7)	-0.70(11)	-0.29(12)	0
$0.0 \pm 1.2) e^{i(-0.424 \pm 0.144)}$	$\Lambda_c^+ \to \Sigma^+ K_S$	0.048(14)		0.035(2)	-0.61(4)	-0.04(4)	0
$9.9 \pm 1.2)e^{-1}$	$\Lambda_c^+ \to p \pi^0$	0.016(7)		0.017(3)	-0.52(17)	-0.45(13)	0
$E_{u\overline{6}}^+ = -15.0 \pm 1.1$,	$\Xi_c^+\to \Xi^0\pi^+$	$1.60(80)^*$		0.54(9)	-0.78(10)	0.09(10)	0.
$0.4e^{-i(164\pm7)^{\circ}}$	$\Xi_c^0\to \Xi^-\pi^+$	$1.43(32)^{****}$	-0.64(5)	3.04(9)	-0.68(3)	-0.02(4)	0
	Channels	$\mathcal{R}_X^{ ext{exp}}$	α_{exp}	\mathcal{R}_X	α	eta	
: 2312.XXXX	$\Xi_c^0 \to \Lambda K_S$	$0.225(13)^{**}$		0.191(6)	-0.68(2)	-0.04(3)	0
\propto Color-suppressed tra	$\Xi_c^0 \to \Xi^- K^+$	$0.0275(57)^{**}$		0.0431(8)	-0.71(2)	-0.02(4)	0
	$\Xi_c^0 \to \Sigma^0 K_S$	0.038(7)		0.041(6)	-0.62(9)	-0.60(11)	0
, 093002 (2019)	$\Xi_c^0\to \Sigma^+ K^-$	$0.123(12)^*$		0.135(10)	-0.41(14)	-0.38(9)	0
\pm 0.029) $e^{-i(151.3\pm0.3)^\circ}$,			β		δ_p –	δ_{s}	
30 input.	Data	-0.64	4 ± 0.7	0 –	1.55 ±	: 0.25	
10 parameters	Theory	-0.29	9 ± 0.0	7 –	$0.75 \pm$: 0.23	

Preliminary results

a Donguin / Troo						
y – rengum / mee	Channels	$\mathcal{B}(10^{-3})$	$\alpha_{CP}(10^{-3})$	$\beta_{CP}(10^{-3})$	$\gamma_{CP}(10^{-3})$	$A_{CP}^{dir}(10$
	$\Lambda_c^+ \to \Sigma^+ K_{S/L}$	0.35(2)	0.06(2)	-0.20(2)	0.04(1)	0.2
	$\Lambda_c^+ \to \Sigma^0 K^+$	0.35(2)	0.00(1)	-0.01(1)	0.00(1)	0.0
$\sim P$	$\Lambda_c^+ \to p \pi^0$	0.17(3)	0.14(39)	0.83(39)	0.62(22)	4.19
	$\Lambda_c^+ \to n\pi^+$	0.58(7)	0.30(16)	0.35(28)	0.47(13)	3.30
\mathbf{B}_{I}^{u} B	$\Lambda_c^+ \to \Lambda K^+$	0.62(3)	0.03(5)	-0.06(5)	0.03(4)	0.5
	$\Xi_c^+\to \Sigma^+\pi^0$	2.70(17)	0.02(2)	0.04(3)	0.02(1)	-0.3
	$\Xi_c^+\to \Sigma^0\pi^+$	2.57(9)	0.02(1)	0.08(1)	0.01(1)	-0.1
$9.9 \pm 1.2)e^{i(-0.424 \pm 0.144)}$,	$\Xi_c^+\to \Xi^0 K^+$	1.19(14)	-0.52(8)	-0.18(14)	-0.80(11)	-2.44
$\tilde{E}_{u\overline{6}}^{+} = -15.0 \pm 1.1 ,$	$\Xi_c^+ \to p K_{S/L}$	0.97(7)	-0.07(2)	0.27(3)	-0.07(2)	-0.2
$= 0.4e^{-i(164\pm7)^{\circ}}$	$\Xi_c^+ \to \Lambda \pi^+$	0.51(11)	-0.38(6)	-0.10(18)	-0.55(19)	-1.81
	$\Xi_c^0\to \Sigma^+\pi^-$	0.35(1)	0.08(13)	-0.28(5)	-0.10(7)	-1.4
: 2312.XXXX	$\Xi_c^0\to \Sigma^0\pi^0$	0.46(1)	-0.03(1)	0.06(1)	-0.01(1)	0.13
\propto Color-suppressed tree	$\Xi_c^0\to \Sigma^-\pi^+$	1.57(1)	-0.01(1)	0.08(1)	0.00(1)	0.0
	$\Xi_c^0 \to \Xi^0 K_{S/L}$	0.34(1)	-0.03(3)	-0.08(4)	-0.02(1)	-0.6
, 093002 (2019)	$\Xi_c^0\to \Xi^- K^+$	1.31(1)	0.00(1)	-0.08(1)	0.00(1)	-0.0
$t \pm 0.029) e^{-i(151.3\pm 0.3)^\circ},$	$\Xi_c^0 \to p K^-$	0.23(1)	-0.10(14)	0.32(5)	0.14(10)	1.43
	$\Xi_c^0 \to n K_{S/L}$	0.36(1)	0.04(4)	0.12(5)	0.03(2)	0.6
30 input,	$\Xi_c^0\to\Lambda\pi^0$	0.11(1)	-0.25(3)	-0.03(13)	-0.37(11)	-1.60
10 parameters						

SU(3) flavor symmetry

What we need

Measurements of β and γ in near future

Measurements of A_{CP} in STCF

PM & Rescattering

• Pole model + Rescattering

PLB 794, 19(2019) $\mathscr{B}(\Lambda_c^+ \to \Sigma^0 K^+) = \mathscr{B}(\Lambda_c^+ \to \Sigma^+ K_S^0)$ (4.7 ± 1.0) × 10⁻⁴ (4.8 ± 1.4) × 10⁻⁴ BESIII PRD 106, no.5, 052003 (2022)

$$\mathcal{M} = a_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_j^{\{ik\}} (\overline{T_8})_k^j P_l^l + b_{15} \times (T_{c\bar{3}})_i + d_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_l^{\{jk\}} (\overline{T_8})_j^l P_k^i + e_{15} \times (T_{c\bar{3}})_i + b_6 \times (T_{c\bar{3}})^{[ik]} (H_{\bar{6}})_{\{ij\}} (\overline{T_8})_k^l P_l^j + c_6 \times (T_{c\bar{3}})_i$$

 $)_{i}(H_{\overline{15}})_{j}^{\{ik\}}(\overline{T_{8}})_{k}^{l}P_{l}^{j} + c_{15} \times (T_{c\bar{3}})_{i}(H_{\overline{15}})_{j}^{\{ik\}}(\overline{T_{8}})_{l}^{j}P_{k}^{l}$ $T_{c\bar{3}})_{i}(H_{\overline{15}})_{l}^{\{jk\}}(\overline{T_{8}})_{j}^{i}P_{k}^{l} + a_{6} \times (T_{c\bar{3}})^{[ik]}(H_{\bar{6}})_{\{ij\}}(\overline{T_{8}})_{k}^{j}P_{l}^{l}$ $\overline{3})^{[kl]}(H_{\bar{6}})_{\{ij\}}(\overline{T_{8}})_{l}^{j}P_{k}^{l} + d_{6} \times (T_{c\bar{3}})^{[ik]}(H_{\bar{6}})_{\{ij\}}(\overline{T_{8}})_{k}^{i}P_{l}^{j}.$

$$\Gamma_{CP}(f;t) \equiv \frac{\Gamma\left(D^{0}(t) \to f\right) - \Gamma\left(\bar{D}^{0}(t) \to f\right)}{\Gamma\left(D^{0}(t) \to f\right) + \Gamma\left(\bar{D}^{0}(t) \to f\right)}$$

• Backup slide

$$\begin{split} g_{n\Sigma^{-}K^{-}}^{-} &: g_{pN\pi^{-}}^{-} : g_{p\Lambda K^{-}}^{-} : g_{\Sigma^{-}\Lambda\pi^{+}}^{-} : g_{\Sigma^{-}\Sigma^{0}\pi^{+}}^{-} : g_{\Lambda\Sigma^{0}\pi^{0}}^{-} \\ &= 1 : g_{s}^{-} : \frac{1}{\sqrt{6}} \left(1 - 2g_{s}^{-} \right) : \frac{1}{\sqrt{6}} \left(1 + g_{s}^{-} \right) : \frac{1}{\sqrt{2}} (g_{s}^{-} - 1) : \frac{1}{\sqrt{6}} (1 + g_{s}^{-}). \end{split}$$

 $\Gamma_{N(1535)}^{N\pi} : \Gamma_{\Sigma(1620)}^{\Lambda\pi} : \Gamma_{\Sigma(1620)}^{\Sigma\pi} : \Gamma_{\Sigma(1620)}^{N\overline{K}}$ $= 44.1 \pm 14.8 : 3.51 \pm 1.53 : 6.63 \pm 2.$

$$\Gamma_{\Lambda(1670)}^{N\overline{K}}:\Gamma_{\Lambda(1670)}^{\Sigma\pi}$$

.70:13.7 ± 10.5:8.0 ± 1.9:12.8 ± 5.1,

$$\mathscr{H}_{eff} = \frac{G_F}{\sqrt{2}} \left[\sum_{qq'} V_{qc}^* V_{q'u} \left(C_+ O_+^{qq'} + C_- O_-^{qq'} \right) - \lambda_b \sum_{i=3\sim 6} C_i O_i \right] \qquad \langle \mathbf{B}P \,|\, \mathscr{H}_{eff} \,|\, \mathbf{B}_c \rangle = i \overline{u} \left(F - G \gamma_5 \right) \left(\frac{1}{2} - \frac{1}{2} \frac{$$

 $O_{+}^{qq'} = (\overline{u}q')_{V-A}(\overline{q}c)_{V-A} \pm (\overline{q}q')_{V-A}(\overline{u}c)_{V-A}$

 $F = \tilde{f}^a (P^{\dagger})^l_l \mathcal{H}(\overline{\mathbf{6}})_{ij} (\mathbf{B}_c)^{ik} (\mathbf{B}^{\dagger})^j_k + \tilde{f}^b \mathcal{H}(\overline{\mathbf{6}})$ $+\tilde{f}^{d}\mathcal{H}(\overline{\mathbf{6}})_{ii}(\mathbf{B}^{\dagger})_{k}^{i}(P^{\dagger})_{l}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{kl}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{k}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}(\mathbf{B}_{c})^{k}+\tilde{f}^{e}(\mathbf{B}^{\dagger})_{k}^{j}$ $F_{\mathbf{3}} = \tilde{f}_{\mathbf{3}}^{a}(\mathbf{B}_{c})_{j}\mathcal{H}(\mathbf{3})^{i}(\mathbf{B}^{\dagger})_{i}^{j}(P^{\dagger})_{k}^{k} + \tilde{f}_{\mathbf{3}}^{b}(\mathbf{B}_{c})_{k}\mathcal{H}$ $+ \tilde{f}_{\mathbf{3}}^{d}(\mathbf{B}_{c})_{j}\mathcal{H}(\mathbf{3})^{i}(\mathbf{B}^{\dagger})_{k}^{j}(P^{\dagger})_{i}^{k},$

 $SU(3)_F$ breaking effects are expected to be much larger than F_3 !

To date, there are in total **30** data points

$$-A \qquad \underbrace{\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{\overline{3}}}_{\mathscr{H}_{eff}} = \underbrace{(\mathbf{15} \oplus \mathbf{3}_{+})}_{O_{+}} \oplus \underbrace{(\mathbf{\overline{6}} \oplus \mathbf{3}_{-})}_{O_{-}}$$

$$i_{ij}(\mathbf{B}_{c})^{ik}(\mathbf{B}^{\dagger})^{l}_{k}(P^{\dagger})^{j}_{l} + \tilde{f}^{c}\mathcal{H}(\mathbf{\overline{6}})_{ij}(\mathbf{B}_{c})^{ik}(P^{\dagger})^{l}_{k}(\mathbf{B}^{\dagger})^{j}_{l}$$

$$Sensitive to CP-C$$

$$Insensitive to CP-C$$

$$H(\mathbf{3})^{i}(\mathbf{B}^{\dagger})^{j}_{i}(P^{\dagger})^{k}_{j} + \tilde{f}^{c}_{\mathbf{3}}(\mathbf{B}_{c})_{i}\mathcal{H}(\mathbf{3})^{i}(\mathbf{B}^{\dagger})^{j}_{k}(P^{\dagger})^{k}_{j}$$

 $(4 + 1 + 4) \times 2(S - \& P - waves) \times 2(complex) - 1 = 35$

$$\mathscr{H}_{eff} = \frac{G_F}{\sqrt{2}} \left[\sum_{qq'} V_{qc}^* V_{q'u} \left(C_+ O_+^{qq'} + C_- O_-^{qq'} \right) - \lambda_b \sum_{i=3\sim 6} C_i O_i \right] \qquad \langle \mathbf{B}P \,|\, \mathscr{H}_{eff} \,|\, \mathbf{B}_c \rangle = i \overline{u} \left(F - G \gamma_5 \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{$$

 $O_{\pm}^{qq'} = (\overline{u}q')_{V-A}(\overline{q}c)_{V-A} \pm (\overline{q}q')_{V-A}(\overline{u}c)_{V-A}$

 $F = \tilde{f}^{a} (P^{\dagger})^{l}_{l} \mathcal{H}(\overline{\mathbf{6}})_{ij} (\mathbf{B}_{c})^{ik} (\mathbf{B}^{\dagger})^{j}_{k} + \tilde{f}^{b} \mathcal{H}(\overline{\mathbf{6}})_{k} + \tilde{f}^{d} \mathcal{H}(\overline{\mathbf{6}})_{ij} (\mathbf{B}^{\dagger})^{i}_{k} (P^{\dagger})^{j}_{l} (\mathbf{B}_{c})^{kl} + \tilde{f}^{e} (\mathbf{B}^{\dagger})^{j}_{k} (\mathbf{B}^{\dagger})^{j}_{l} (\mathbf{B}^{\dagger})^$

$$\mathcal{H}(\overline{\mathbf{6}}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & V_{cs}^* V_{ud} & -\lambda_s - \frac{\lambda_b}{2} \\ 0 & -\lambda_s - \frac{\lambda_b}{2} & V_{cd}^* V_{us} \end{pmatrix} \quad \mathcal{H}(\mathbf{15})_k^{ij} = \begin{pmatrix} \begin{pmatrix} \frac{\lambda_b}{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij}, \begin{pmatrix} 0 & -\lambda_s - \frac{3\lambda_b}{4} & V_{cs}^* V_{ud} \\ -\lambda_s - \frac{3\lambda_b}{4} & 0 & 0 \\ V_{cs}^* V_{ud} & 0 & 0 \end{pmatrix}_{ij}, \begin{pmatrix} 0 & V_{cd}^* V_{us} & \lambda_s + \frac{\lambda_b}{4} \\ V_{cd}^* V_{us} & 0 & 0 \\ \lambda_s + \frac{\lambda_b}{4} & 0 & 0 \end{pmatrix}_{ij}$$

To date, there are in total **30** data points **19** $(4+1+4) \times 2(S-\& P-waves) \times 2(complex) - 1 = 35$

$$-A \qquad \underbrace{\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{\overline{3}}}_{\mathscr{H}_{eff}} = \underbrace{(\mathbf{15} \oplus \mathbf{\overline{3}}_{+})}_{O_{+}} \oplus \underbrace{(\mathbf{\overline{6}} \oplus \mathbf{\overline{3}}_{+})}_{O_{-}}$$
$$\underbrace{(\mathbf{\overline{6}} \oplus \mathbf{\overline{3}}_{+})}_{O_{-}} \oplus \underbrace{(\mathbf{\overline{6}} \oplus \mathbf{\overline{3}}_{+})}_{O_{-}}$$
$$\underbrace{(\mathbf{\overline{6}} \oplus \mathbf{\overline{3}}_{+})}_{O_{+}} \oplus \underbrace{(\mathbf{\overline{6}} \oplus \mathbf{\overline{3}}_{+})}_{O_{+}} \oplus \underbrace{(\mathbf{\overline{6}} \oplus \mathbf{\overline{3}}_{+})}_{O_{+}} \oplus \underbrace{(\mathbf{\overline{6}} \oplus \mathbf{\overline{3}}_{+})}_{O_{+}}$$

 $F = \tilde{f}^{a} (P^{\dagger})^{l}_{l} \mathcal{H}(\overline{\mathbf{6}})_{ij} (\mathbf{B}_{c})^{ik} (\mathbf{B}^{\dagger})^{j}_{k} + \tilde{f}^{b} \mathcal{H}(\overline{\mathbf{6}})_{ij} (\mathbf{B}_{c})^{ik} (\mathbf{B}^{\dagger})^{l}_{l} + \tilde{f}^{c} \mathcal{H}(\overline{\mathbf{6}})_{ij} (\mathbf{B}_{c})^{ik} (P^{\dagger})^{l}_{k} (\mathbf{B}^{\dagger})^{j}_{l} \\ + \tilde{f}^{d} \mathcal{H}(\overline{\mathbf{6}})_{ij} (\mathbf{B}^{\dagger})^{i}_{k} (P^{\dagger})^{j}_{l} (\mathbf{B}_{c})^{kl} + \tilde{f}^{e} (\mathbf{B}^{\dagger})^{j}_{i} \mathcal{H}(\mathbf{15})^{\{ik\}}_{l} (P^{\dagger})^{l}_{k} (\mathbf{B}_{c})_{j} + \lambda_{b} F_{\mathbf{3}},$

$$CP \propto \tilde{f}^{e}, \tilde{g}^{e} \qquad \qquad A_{CP}^{dir} = \frac{\Gamma - \overline{\Gamma}}{\Gamma + \overline{\Gamma}}, \quad \alpha_{CP} = \frac{\alpha}{2}$$
$$\beta_{CP} = \frac{\beta + \overline{\beta}}{2}, \quad \gamma_{CP} = \frac{\gamma}{2}$$

$$\begin{split} f^x &= 1.80(35), 0.91(30), 0.96(5), 0.31(31), 0.55(63), \\ \delta^x_f &= 1.66(31), 0, -2.20(39), -0.57(31), -0.58(50), \end{split}$$

 $g^x = 6.11(1.67), 7.01(29), 0.69(43), 1.31(39), 1.62(1.34), \delta^x_g = -1.77(34), 2.60(0.37), 2.03(0.43), 2.39(0.74), 1.98$

CP-odd quantities ~ 10^{-4} $a_{D\to K^+K^-}^{\text{dir}} - a_{D\to \pi^+\pi^-}^{\text{dir}} = (-1.57 \pm 0.29) \times 10^{-4}$

arXiv:2312.xxxx [hep-ph]

$\mathcal{H}(15)^{\{ik\}}_l(P^\dagger$	$)_k^l(\mathbf{B}_c)_j$	$+ \lambda_b$	F_{3} ,			
	Channels	$\mathcal{B}(10^{-3})$	$\alpha_{CP}(10^{-3})$	$\beta_{CP}(10^{-3})$	$\gamma_{CP}(10^{-3})$	$A_{CP}^{dir}(10^{-3})$
	$\Lambda_c^+ \to p \pi^0$	0.16(2)	-0.61(39)	-0.43(48)	0.53(145)	0.01(1)
$\alpha + \alpha$	$\Lambda_c^+ \to p\eta$	1.45(25)	0.05(17)	0.04(14)	-0.07(22)	-0.03(4)
2 '	$\Lambda_c^+ \to p\eta'$	0.52(11)	-0.02(7)	0.01(4)	0.00(4)	0.00(1)
$-\overline{\gamma}$	$\Lambda_c^+ \to n\pi^+$	0.67(8)	0.12(20)	0.13(26)	-0.28(40)	-0.01(2)
$\frac{1}{2}$ ·	$\Lambda_c^+ \to \Lambda^0 K^+$	0.63(2)	-0.03(10)	0.03(5)	0.04(24)	0.01(1)
	$\Xi_c^+\to \Sigma^+\pi^0$	2.11(14)	0.06(13)	-0.01(13)	-0.09(42)	-0.07(7)
	$\Xi_c^+\to \Sigma^+\eta$	0.70(32)	-0.10(22)	0.09(73)	0.29(57)	0.01(4)
	$\Xi_c^+\to \Sigma^+\eta'$	1.13(23)	0.03(7)	-0.01(2)	-0.01(4)	-0.01(0)
	$\Xi_c^+\to \Sigma^0\pi^+$	3.04(11)	-0.01(6)	-0.01(11)	0.05(21)	0.05(5)
	$\Xi_c^+\to \Xi^0 K^+$	1.04(13)	0.02(14)	0.13(18)	-0.18(25)	-0.02(2)
(1)	$\Xi_c^+\to\Lambda^0\pi^+$	0.32(9)	0.0(19)	0.36(30)	0.20(19)	0.00(1)
4),	$\Xi_c^0\to \Sigma^0\pi^0$	0.34(2)	-0.04(12)	0.25(39)	0.12(12)	0.00(1)
8(1.03)	$\Xi_c^0\to \Sigma^0\eta$	0.12(5)	-0.11(22)	0.09(73)	0.29(57)	0.00(1)
	$\Xi_c^0\to \Sigma^0\eta'$	0.19(4)	0.03(7)	-0.01(2)	-0.01(4)	0.00(1)
	$\Xi_c^0\to \Sigma^-\pi^+$	1.83(6)	0.02(7)	-0.09(21)	0.03(12)	0.02(3)
2	$\Xi_c^0\to \Xi^- K^+$	1.12(3)	0.02(5)	-0.08(16)	0.02(11)	0.01(1)
-3	$\Xi_c^0\to\Lambda^0\pi^0$	0.09(1)	0.07(20)	-0.27(25)	-0.15(17)	0.00(1)
	$\Xi_c^0\to\Lambda^0\eta$	0.43(11)	0.06(12)	0.11(14)	-0.01(2)	-0.01(1)
	$\Xi_c^0\to\Lambda^0\eta^\prime$	0.68(13)	0.00(1)	0.00(1)	0.00(1)	0.00(1)

$$\frac{\left|\frac{V_{ud} V_{ub}^{*}}{V_{cd} V_{cb}^{*}}\right|}{\left|\begin{array}{c} \sqrt{\rho, \eta} \\ \alpha = \phi_{2} \end{array}\right|}$$

$$\alpha = \phi_{2}$$

$$\gamma = \phi_{3}$$

$$(0,0)$$
Figure 11.1: Sketch

The CKM matrix elements are fundamental parameters of the SM, so their precise determination is important. The unitarity of the CKM matrix imposes $\sum_i V_{ij}V_{ik}^* = \delta_{jk}$ and $\sum_j V_{ij}V_{kj}^* = \delta_{ik}$. The six vanishing combinations can be represented as triangles in a complex plane, of which the ones obtained by taking scalar products of neighboring rows or columns are nearly degenerate. The areas of all triangles are the same, half of the Jarlskog invariant, J [7], which is a phase-convention independent measure of CP violation, $\text{Im}\left[V_{ij}V_{kl}V_{il}^*V_{kj}^*\right] = J \sum_{m,n} \varepsilon_{ikm} \varepsilon_{jln}$.

of the unitarity triangle.