

Charmed baryon decays with re-scattering mechanism

Cai-Ping Jia(贾彩萍)

Lanzhou University

In collaboration with Hua-Yu Jiang and Fu-Sheng Yu

2023.12.17

Content

Introduction

> Framework

> Results and discussion

Summary

Introduction

Processes	Branching Ratio	Decay Parameter α
$\Lambda_c^+ \to \Lambda^0 \pi^+$	$(1.30 \pm 0.07)\%$	-0.84 ± 0.09
$\Lambda_c^+ \to \Sigma^+ \pi^0$	$(1.25 \pm 0.10)\%$	-0.55 ± 0.11
$\Lambda_c^+ \to \Sigma^0 \pi^+$	$(1.29 \pm 0.07)\%$	-0.73 ± 0.18
$\Lambda_c^+ \to p K_S^0$	$(1.59 \pm 0.08)\%$	0.2 ± 0.5
$\Lambda_c^+\to \Sigma^+\eta$	$(4.4 \pm 2.0) \times 10^{-3}$	
$\Lambda_c^+ \to \Sigma^+ \eta'$	$(1.5 \pm 0.6)\%$	
$\Lambda_c^+ \to \Xi^0 K^+$	$(5.5 \pm 0.7) \times 10^{-3}$	
$\Lambda_c^+ \to p \pi^0$	$< 8 \times 10^{-5}$	
$\Lambda_c^+ \to p\eta$	$(1.42 \pm 0.12) \times 10^{-3}$	
$\Lambda_c^+ \to p\eta'$	$(4.73 \pm 0.98) \times 10^{-4}$	
$\Lambda_c^+ \to \Lambda^0 K^+$	$(6.1 \pm 1.2) \times 10^{-4}$	
$\Lambda_c^+ \to \Sigma^0 K^+$	$(5.2 \pm 0.8) \times 10^{-4}$	
$\Lambda_c^+ \to n\pi^+$	$(0.66 \pm 0.13) \times 10^{-3}$	

Processes	Branching Ratio	Decay Parameter α
$\Lambda_c^+ \to \Lambda^0 \rho^+$	$(4.06 \pm 0.52)\%$	-0.763 ± 0.070
$\Lambda_c^+ \to \Sigma^+ \rho^0$	< 1.7%	
$\Lambda_c^+ \to p \bar{K}^{*0}$	$(1.96 \pm 0.27)\%$	
$\Lambda_c^+ \to \Sigma^+ \omega$	$(1.70 \pm 0.21)\%$	
$\Lambda_c^+ \to \Sigma^+ \phi$	$(3.9 \pm 0.6) \times 10^{-3}$	
$\Lambda_c^+ \to \Sigma^+ K^{*0}$	$(3.5 \pm 1.0) \times 10^{-3}$	
$\Lambda_c^+ \to p\phi$	$(1.06 \pm 0.14) \times 10^{-3}$	
$\Lambda_c^+ \to p\omega$	$(8.3 \pm 1.1) \times 10^{-4}$	

BESIII Collaboration.....

Belle II Collaboration.....

Introduction

> Experiment:

贾彩萍(兰州大学)

- CP violation is required for the matter-antimatter asymmetry in the Universe [Sakharov, 1967]
- CPV in strange, charm and bottom mesons have been well established.
- No CPV has been yet observed in charmed baryon decays.

process	CPV observables		
$\Lambda_c^+\to\Lambda\pi^+$	$A^{\alpha}_{CP} = -0.07 \pm 0.19 \pm 0.24$	FOCUS,PLB (2006)	
$\Lambda^+ \times \Lambda V^+$	$A_{CP}^{dir} = 0.021 \pm 0.026 \pm 0.001$		
$M_C \rightarrow MK$	$A^{\alpha}_{CP} = -0.023 \pm 0.086 \pm 0.071$	Pollo Sci Pull (2022)	
$\Lambda_c^+\to \Sigma^0 K^+$	$A_{CP}^{dir} = 0.025 \pm 0.054 \pm 0.004$	<i>Belle, Sci.Bull.</i> (2023)	
	$A^{lpha}_{CP} = 0.08 \pm 0.35 \pm 0.14$		
$\Xi_c^0 \to \Xi^- \pi^+$	$A^{lpha}_{CP} = 0.024 \pm 0.052 \pm 0.014$	Belle, PRL (2021)	
$\Lambda_c^+ \to p K^+ K^-$	$A^{dir}_{CP}(\Lambda^+_c \to pK^+K^-) - A^{dir}_{CP}(\Lambda^+_c \to p\pi^+\pi^-)$	14Ch 14ED (2018)	
$\Lambda_c^+ \to p \pi^+ \pi^-$	$= (0.30 \pm 0.91 \pm 0.61)\%$	LIICD, JIILF (2018)	
$\Xi_c^+ \to p K^- \pi^+$	NO CP violation	LHCb, EPJC (2020)	

Introduction

- Theory: non-perturbative effects
 - No perturbative calculation based on the first principle
 - $-1/m_c$ expansion is not under control
 - Global fit based on the $SU(3)_F$ symmetry:

- Lots of inspiration when there are no dynamics (1)
- M.J. Savage, R.P. Springer, Phys. Rev. D 42 (1990) 1527.
- C.D. Lü, W. Wang, F.S. Yu, Phys. Rev. D 93(5) (2016) .
- C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Eur. Phys. J. C 78, no. 7, 593 (2018).
- C. Q. Geng, C. W. Liu and T. H. Tsai, Phys. Rev. D 101, no.5, 053002 (2020).
- Dynamical model calculation: theoretical uncertainty (2)
 - H. Y. Cheng, X. W. Kang and F. Xu, Phys. Rev. D 97, 074028(2018).
 - J. Zou, F. Xu, G. Meng and H. Y. Cheng, Phys. Rev. D 101, 014011(2020).
 - P. Y. Niu, J. M. Richard, Q. Wang, and Q. Zhao, Phys. Rev. D, 102, 073005(2020).
- No any numerical prediction on CPV of charm-baryon decays (3)

Final-state interactions:

- The natural physical image of the long-distance nonperturbative contribution
 - H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71, 014030 (2005).

→ 410 citations

- H. Y. Cheng and C. W. Chiang, Phys. Rev. D 81, 074021 (2010).
- Bediaga, Frederico, Magalhaes, PRL2023;Pich, Solomonidi, Silva, PRD2023. data-driven

$$\Delta A_{CP}^{exp} = -(1.54 \pm 0.29) \times 10^{-3}$$
$$\Delta A_{CP}^{th} = -(0.64 \pm 0.18) \times 10^{-3}$$

F.-S. Yu, H.-Y. Jiang, R.-H. Li, C.-D. Lv, W. Wang, Z.-X. Zhao, Chin. Phys. C 42 (5) (2018) 051001.

"Discovery Potentials of Doubly Charmed Baryons"

Successfully !

• Natural physical image of long-distance nonperturbative contribution

✓ Short-distance

✓ Long-distance

quark exchange

hadronic triangle

贾彩萍 (兰州大学)

Conventional method: optical theorem + Cutkosky cutting rule

H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71, 014030 (2005)......
 $\Lambda = m_k + \eta \Lambda_{OCD}$

$$\mathcal{A}bs[\mathcal{M}(P_i \to P_3 P_4)] = \frac{1}{2} \sum_{\{P_1 P_2\}} \int \frac{\mathrm{d}^3 p_1}{(2\pi)^3 2E_1} \int \frac{\mathrm{d}^3 p_2}{(2\pi)^3 2E_2} (2\pi)^4 \delta^4 (p_3 + p_4 - p_1 - p_2) \cdot M(P_i \to \{P_1 P_2\}) T^*(P_3 P_4 \to \{P_1 P_2\}).$$

• Strong model-dependent in charmed baryon decay:

decay mode	Topology diagram	Experiment(%)	Short-distance	η
$\Lambda_c^+ \to \Sigma^+ \phi$	E ₁	0.39 ± 0.06	-	6.5
$\Lambda_c^+ \to p\omega$	C, C', E_1, E_2, B	0.09 ± 0.04	2.83×10^{-6}	0.60

• Only a part of the imaginary contribution is included......

- Off-shell effects
- Lost contribution
- J.J. Han, H.Y. Jiang, W. Liu, Z.J. Xiao, and F.S. Yu, " Chin. Phys. C 45, 053105 (2021).

Improving method: Loop integral

• Integral divergence: Pauli-Villars regularization

$$\frac{1}{k^2 - m^2 + i\epsilon} \to \frac{1}{k^2 - m^2 + i\epsilon} + \sum_i \frac{a_i}{k^2 - \Lambda_i^2 + i\epsilon}$$

$$\Rightarrow \frac{1}{p_1^2 - m_1^2 + i\epsilon} + \frac{a_1}{p_1^2 - \Lambda_1^2 + i\epsilon} \sim \frac{1}{p_1^2 - m_1^2} \frac{m_1^2 - \Lambda_1^2}{p_1^2 - \Lambda_1^2} \qquad \Lambda_1 = m_1 + \eta \Lambda_{QCD}$$

• Weak vertex:

$$\left\langle \mathcal{B}_{8}M\left|\mathcal{H}_{eff}\right|\mathcal{B}_{c}\right\rangle_{SD}^{T}=\frac{G_{F}}{\sqrt{2}}V_{cq'}^{*}V_{uq}a_{1}(\mu)\left\langle M\left|\bar{u}\gamma^{\mu}(1-\gamma_{5})q\right|0\right\rangle \left\langle \mathcal{B}_{8}\left|\bar{q}'\gamma_{\mu}(1-\gamma_{5})c\right|\mathcal{B}_{c}\right\rangle$$

• Strong scattering:

decay constant heavy-to-light form factor

- $\mathcal{L}_{VPP} = \frac{ig_{VPP}}{\sqrt{2}} Tr[V^{\mu}[P,\partial_{\mu}P]]$ $\mathcal{L}_{VBB} = f_{1VBB}Tr[\bar{\mathcal{B}}\gamma_{\mu}V^{\mu}\mathcal{B}] + \frac{f_{2VBB}}{m_{\mathcal{B}1} + m_{\mathcal{B}2}}Tr[\bar{\mathcal{B}}\sigma_{\mu\nu}\partial^{\mu}V^{\nu}\mathcal{B}]$ Error sources
 - S. Meinel, Phys. Rev. Lett. 118, no.8, 082001 (2017).
 - T.M.Aliev, A. Ozpineci, M. Savci and V. S. Zamiralov, Phys. Rev. D80 016010 (2009) .

Improving method: Loop integral

(2) model dependence $\mathcal{M}[P, B; V]$ $\mathcal{M}[$

$$= -i \int \frac{\alpha p_1}{(2\pi)^4} g_{BBP} g_{VPP} \bar{u}(p_4, s_4) \gamma_5(p_2 + m_2) (A + B\gamma_5) u(p, s) \epsilon^{\star}_{\mu}(p_3, \lambda_3) (p_1 + k)^{\mu} \\ \times \frac{1}{(p_1^2 - m_1^2 + i\epsilon)(p_2^2 - m_2^2 + i\epsilon)(k^2 - m_k^2 + i\epsilon)} \left(\frac{\Lambda_1^2 - m_1^2}{\Lambda_1^2 - p_1^2} \right) \left(\frac{\Lambda_2^2 - m_2^2}{\Lambda_2^2 - p_2^2} \right) \left(\frac{\Lambda_k^2 - m_k^2}{\Lambda_k^2 - k^2} \right)$$

• The complete amplitudes with strong phase

 $\begin{pmatrix} \{0., 0., -1.57956 \times 10^{-7} + 6.40596 \times 10^{-8} i\} & \{4.65132 \times 10^{-7} + 1.10998 \times 10^{-6} i, 0., 0.\} \\ \{0., -1.00635 \times 10^{-6} + 1.46048 \times 10^{-7} i, 0.\} & \{0., 0., 4.56956 \times 10^{-7} - 2.83047 \times 10^{-7} i\} \end{pmatrix}$

- The contribution of the real part is on the same order as the contribution of the imaginary part!
- The process dependence of the parameters is greatly reduced.

Results and discussion

> Branching ratio: $\eta = 0.6 \pm 0.1$

$$\Gamma(\mathcal{B}_c \to \mathcal{B}_8 V) = \frac{p_c}{8\pi m_i^2} \frac{1}{2} \sum_{\lambda\lambda'\sigma} |\mathcal{A}(\mathcal{B}_c \to \mathcal{B}_8 V)|^2$$

- Only one parameter explains all the 8 experimental data!

decay mode	topology	experiment(%)	Short-distance	prediction(%)
$\Lambda_c^+ \to \Lambda^0 \rho^+$	T, C', E_2, B	4.06 ± 0.52	4.91%	8 ± 0.8
$\Lambda_c^+ \to p\phi$	С	0.106 ± 0.014	1.92×10^{-6}	0.09 ± 0.03
$\Lambda_c^+\to\Sigma^+\phi$	<i>E</i> ₁	0.39 ± 0.06	-	0.49 ± 0.22
$\Lambda_c^+ \to p \omega$	C, C', E_1, E_2, B	0.09 ± 0.04	2.83×10^{-6}	0.08 ± 0.04
$\Lambda_c^+\to \Sigma^+\rho^0$	C', E ₂ , B	< 1.7	-	2.0 ± 1.0
$\Lambda_c^+\to\Sigma^0\rho^+$	C', E ₂ , B	Isospin	-	Isospin
$\Lambda_c^+\to\Sigma^+\omega$	C', E ₂ , B	1.7 ± 0.21	-	1.8 ± 0.7
$\Lambda_c^+ \to p \bar{K}^{*0}$	<i>C</i> , <i>E</i> ₁	1.96 ± 0.27	3.47×10^{-5}	2.9 ± 1.2
$\Lambda_c^+\to \Sigma^+ K^{*0}$	C', E ₁	0.35 ± 0.1	_	0.28 ± 0.13

Results and discussion

> Decay parameters:

$$\alpha = \frac{\left|H_{1,\frac{1}{2}}\right|^{2} - \left|H_{-1,-\frac{1}{2}}\right|^{2}}{\left|H_{1,\frac{1}{2}}\right|^{2} + \left|H_{-1,-\frac{1}{2}}\right|^{2}}; \quad \beta = \frac{\left|H_{0,\frac{1}{2}}\right|^{2} - \left|H_{0,-\frac{1}{2}}\right|^{2}}{\left|H_{0,-\frac{1}{2}}\right|^{2}}; \quad \gamma = \frac{\left|H_{1,\frac{1}{2}}\right|^{2} + \left|H_{-1,-\frac{1}{2}}\right|^{2}}{\left|H_{0,-\frac{1}{2}}\right|^{2}}; \quad P_{L} = \frac{\beta + \alpha \cdot \gamma}{1 + \gamma}$$

decay mode	experiment	α	β	γ	P _L
$\Lambda_c^+ \to \Lambda^0 \rho^+$	-0.76 ± 0.07	-0.80 ± 0.04	-0.98 ± 0.01	0.50 ± 0.1	-0.91 ± 0.03
$\Lambda_c^+ \to \Sigma^+ \phi$	-	-0.012 ± 0.019	0.35 ± 0.09	2.03 ± 0.04	0.11 ± 0.05
$\Lambda_c^+ \to p\omega$	-	0.35 ± 0.04	0.52 ± 0.03	0.46 ± 0.07	0.46 ± 0.03
$\Lambda_c^+ \to p\phi$	-	-0.74 ± 0.03	-0.94 ± 0.04	3.82 ± 1.10	-0.78 ± 0.01
$\Lambda_c^+ \to \Sigma^+ \rho^0$	-	-0.01 ± 0.04	0.18 ± 0.1	1.10 ± 0.11	0.08 ± 0.07
$\Lambda_c^+ \to \Sigma^0 \rho^+$	_	Isospin	Isospin	Isospin	Isospin
$\Lambda_c^+ \to \Sigma^+ \omega$	_	-0.01 ± 0.04	-0.17 ± 0.03	0.49 ± 0.23	-0.12 ± 0.01
$\Lambda_c^+ \to p \bar{K}^{*0}$	-	0.22 ± 0.05	0.60 ± 0.07	1.45 ± 0.20	0.38 ± 0.07
$\Lambda_c^+ \to \Sigma^+ K^{*0}$	-	-0.18 ± 0.11	-0.20 ± 0.03	3.89 <u>+</u> 1.79	-0.18 ± 0.09

M. Ablikim et al., Phys. Rev. Lett., vol. 129, no. 23, p. 231803, 2022.

• short-distance dominated:

decay mode	topology	experiment(%)	Short-distance	prediction(%)
$\Lambda_c^+ \to \Lambda^0 \rho^+$	T, C', E_2, B	4.06 ± 0.52	4.91%	8 ± 0.8

$$\left\langle \mathcal{B}_{8}M\left|\mathcal{H}_{eff}\right|\mathcal{B}_{c}\right\rangle_{SD}^{T}=\frac{G_{F}}{\sqrt{2}}V_{cq'}^{*}V_{uq}a_{1}(\mu)\left\langle M\left|\bar{u}\gamma^{\mu}(1-\gamma_{5})q\right|0\right\rangle \left\langle \mathcal{B}_{8}\left|\bar{q}'\gamma_{\mu}(1-\gamma_{5})c\right|\mathcal{B}_{c}\right\rangle$$

FIG. 3. Comparison of form factors with LQCD calculations. The bands show the total uncertainties.

M. Ablikim et al., Phys. Rev. Lett., vol. 129, no. 23, p. 231803, 2022.

• It is essential to input the much more precise form factors!

```
贾彩萍 (兰州大学)
```


Iong-distance dominated:

decay mode	topology	experiment(%)		Short-distance		prediction(%)
$\Lambda_c^+ \to p\phi$	С	0.106 ± 0.014		1.92×10^{-6}		0.09 ± 0.03
decay mode	α		β		γ	P _L
$\Lambda_c^+ \to p\phi$	-0.74 ± 0.03		-0.94 ± 0.0)4	3.82 ± 1.10	-0.78 ± 0.01

- The branching ratio is dependent on the parameter η ;
- The decay parameters are almost independent of the parameter η ;
- 贾彩萍 (兰州大学)

> CP violation:

• key points: phase difference—strong and weak

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} - \frac{\lambda^4}{8} & \lambda & A\lambda^3 \left(\rho - i\eta\right) \\ -\lambda + A^2 \lambda^5 \left(\frac{1}{2} - \rho - i\eta\right) & 1 - \frac{\lambda^2}{2} - \lambda^4 \left(\frac{1}{8} + \frac{A^2}{2}\right) & A\lambda^2 \\ A\lambda^3 \left(\rho - i\eta\right) + A\lambda^5 \left(\rho + i\eta\right) & -A\lambda^2 + A\lambda^4 \left(\frac{1}{2} - \rho - i\eta\right) & 1 - \frac{A^2 \lambda^4}{2} \end{pmatrix}$$

CPV can be easily obtained within the re-scattering mechanism !

Results and discussion

Summary

> Summary

- Re-scattering mechanism is the natural physical image of the long-distance nonperturbative effects.
- Using only one parameter to explain a class of channels with the re-scattering mechanism, avoids introducing too many parameters and reducing the predictive power of theory.
- Predicting the decay parameters and CP violation of charmed baryon decay naturally.
- Generalizing.....

Thank you very much!

Charmed Hadron:

difficult to calculate

• ideal platform to understand its dynamics

non-perturbative effects