

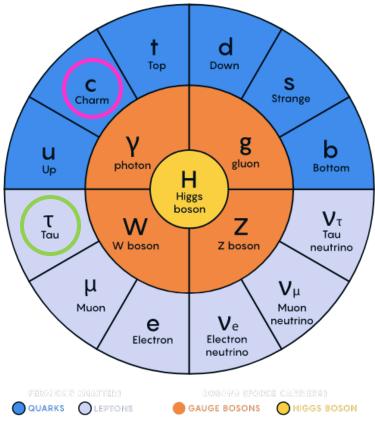
全国第二十届重味物理和CP破坏研讨会

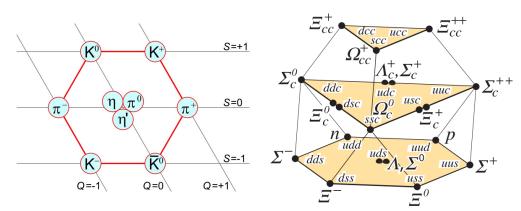
Research on inclusive decay at BESIII

Dong Xiao (肖栋) Lanzhou University (兰州大学)

(On behalf of the BESIII Collaboration)

2023.12.17


- Introduction to inclusive decay
- Methods for inclusive decay
- Inclusive decays at BESIII
- Summary & prospect


₩S

Standard model

• Standard model(SM):

Success and shortage of SM:

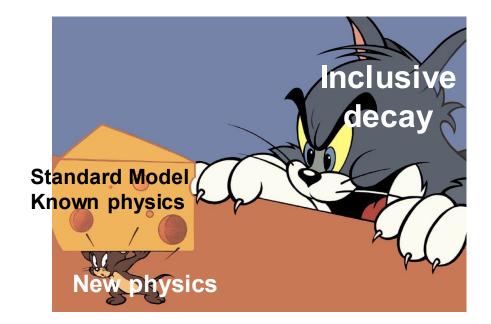
- ✓ A good framework of particle physics based on 3 interactions and 61 basic particles;
- ✓ Agreement well with most experiments;
- ✓ Successful predictions.
- No gravity;
- Parameters;
- CP violation;
- Neutrino oscillation;
- Non-perturbative;

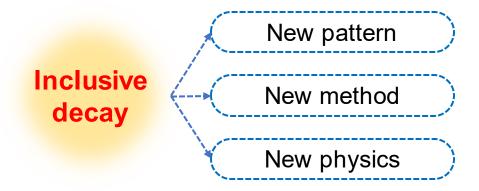
Higher precision!

More situations!

New physics!

Dong Xiao (LZU)

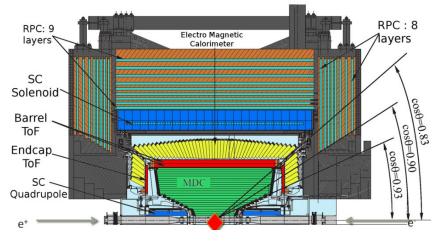

Inclusive decay at BESIII

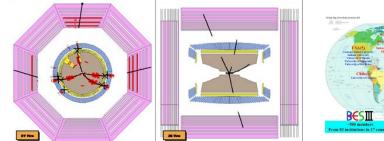

. . .

$\texttt{Horizontal set} \qquad \qquad \texttt{Inclusive decay} \rightarrow \texttt{New physics}$

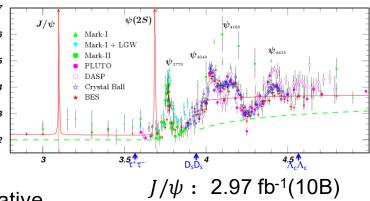
Why study inclusive decay?

Increasing attention on inclusive decay!


Growing numbers of experimental research, but less theoretical.


BEPCII

BEPCII



BESIII

First HEP collider in China (1988) c.m.s energy: 2 ~ 5 GeV Max luminosity: 1×10³³cm⁻²s⁻¹

Non-perturbative $\tau - charm$ region $\tau^{\pm} \ \ D/D_s \ \Lambda_c^+...$

 J/ψ : 2.97 fb⁻¹(10B) $\psi(3686)$: 4.07 fb⁻¹(2.7B) $\psi(3770)$: 20 fb⁻¹ 4.6~4.95GeV: 6.4 fb⁻¹

Dong Xiao (LZU)

Inclusive decay

Inclusive decay:

- Decay as $A \rightarrow B + X$, B is a certain particle, X contains any possible particles, then this decay is called an inclusive decay of particle A;
- Inclusive decay is the sum of a series of exclusive decays.

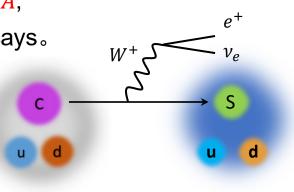
Motivation:

- Provide verifications for SM parameters;
- Guide for undiscovered exclusive decays;
- Study the characteristics of a series of decays.

• BF;

- Decay parameter;
- CPV

...


$$\Lambda_c^+ \to \Lambda X_{(exclusive)} \approx (30.1 \pm 1.2)\%$$

$$\Lambda_c^+ \to \Lambda X_{(inclusive)} = (38.2 \pm 2.6)\%$$

$$\frac{\mathfrak{B}(\Lambda_c^+ \to \Lambda X)_{exclusive}}{\mathfrak{B}(\Lambda_c^+ \to \Lambda X)_{inclusive}} = (78.8 \pm 6.3)\%$$

=> Any other decay modes?

 $|V_{cs}|$

 $c \rightarrow se^+ v_{\rho}$

Status of inclusive decay

• **D**⁺:

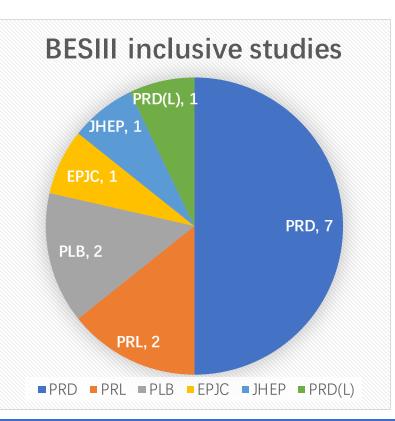
• Inc	lusive modes		
Γ_1	e^+ semileptonic	CLEO,2010	$(16.07\pm 0.30)\%$
Γ_2	μ^+ anything	BES2,2008	$(17.6 \pm 3.2)\%$
Γ_3	K^- anything	BES2,2007	$(25.7 \pm 1.4)\%$
Γ_4	\overline{K}^{0} anything $+$ K^{0} anything	BES3,2023	$(61 \pm 5)\%$
Γ_5	K^+ anything	BES2,2007	$(5.9\pm0.8)\%$
Γ_6	$K^*(892)^-$ anything	BES2,2006	$(6\pm5)\%$
Γ_7	$\overline{K}^{*}(892)^{0}$ anything	BES,2005	$(23\pm5)\%$
Γ_8	$K^{*}(892)^{0}$ anything	BES,2005	< 6.6%
Γ_9	η anything	CLEO,2006	$(6.3\pm0.7)\%$
Γ_{10}	η' anything	CLEO,2006	$(1.04 \pm 0.18)\%$
Γ_{11}	ϕ anything	BES3,2019	$(1.12 \pm 0.04)\%$

D⁰:

• Inc	lusive modes		
Γ_5	e ⁺ anything	CLEO,2010	[4] $(6.49 \pm 0.11)\%$
Γ_6	μ^+ anything	BES2,2008	$(6.8\pm0.6)\%$
Γ7	K^- anything	BES2,2007	$(54.7 \pm 2.8)\%$
Γ_8	\overline{K}^0 anything $+$ K^0 anything	BES3,2023	$(47\pm4)\%$
Г9	K^+ anything	BES2,2007	$(3.4\pm0.4)\%$
Γ ₁₀	$K^{*}(892)^{-}$ anything	BES2,2006	$(15\pm9)\%$
Γ ₁₁	$\overline{K}^{*}(892)^{0}$ anything	BES,2005	$(9\pm4)\%$
Γ ₁₂	$K^{*}(892)^{+}$ anything	BES2,2006	< 3.6%
Γ ₁₃	$K^*(892)^0$ anything	BES,2005	$(2.8\pm1.3)\%$
Γ ₁₄	η anything	CLEO,2006	$(9.5\pm0.9)\%$
Γ ₁₅	η' anything	CLEO,2006	$(2.48 \pm 0.27)\%$
Γ ₁₆	ϕ anything	BES3,2019	$(1.08 \pm 0.04)\%$

• Λ⁺_c:

 Inc 	lusive modes		
Γ_{76}	e ⁺ anything	$(3.95 \pm 0.35)\%$	→ BESIII, PRL
Γ77	p anything	$(50 \pm 16)\%$	→ BESIII, on-going
Γ ₇₈	n anything	$(50 \pm 16)\%$	→ BESIII, PRD
Γ ₇₉	arLambda anything	$(38.2^{+2.9}_{-2.4})\%$ –	→ BESIII, PRL
Γ_{80}	K^0_S anything	$(9.9 \pm 0.7)\%$	→ BESIII, EPJC
Γ ₈₁	3prongs	$(24\pm8)\%$	


Status of inclusive decay

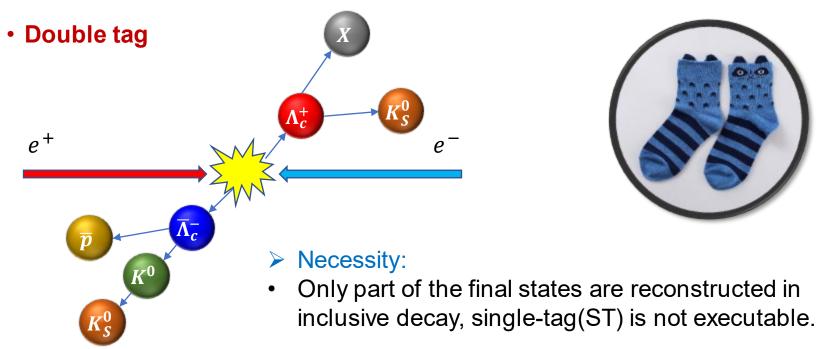
• **D**⁺_s:

 Inclu 	sive modes			
Γ_1	e^+ semileptonic	BES3,2021	[1]	$(6.33 \pm 0.15)\%$
Γ_2	π^+ anything	CLEO,2009		$(119.3 \pm 1.4)\%$
Γ_3	π^- anything	CLEO,2009		$(43.2 \pm 0.9)\%$
Γ_4	π^0 anything	CLEO,2009		$(123\pm7)\%$
Γ_5	K^- anything	CLEO,2009		$(18.7\pm0.5)\%$
Γ_6	K^+ anything	CLEO,2009		$(28.9\pm0.7)\%$
Γ_7	K^0_S anything	CLEO,2009		$(19.0\pm1.1)\%$
Γ_8	η anything	CLEO,2009	[2]	$(29.9\pm2.8)\%$
Γ_9	ω anything	CLEO,2009		$(6.1\pm1.4)\%$
Γ_{10}	η^{\prime} anything	BES3,2015	[3]	$(10.3\pm1.4)\%$
Γ_{11}	$f_0(980)$ anything, $f_0 o \pi^+\pi^-$	CLEO,2009		< 1.3%
Γ_{12}	ϕ anything	CLEO,2009		$(15.7 \pm 1.0)\%$
Γ_{13}	K^+K^- anything	CLEO,2009		$(15.8\pm0.7)\%$
Γ_{14}	$K^0_S \ K^+$ anything	CLEO,2009		$(5.8\pm0.5)\%$
Γ_{15}	$K^0_S \ K^-$ anything	CLEO,2009		$(1.9\pm0.4)\%$
Γ_{16}	2 K_S^0 anything	CLEO,2009		$(1.70 \pm 0.32)\%$
Γ_{17}	2 K ⁺ anything	CLEO,2009		$< 2.6 imes 10^{-3}$
Γ_{18}	2 K ⁻ anything	CLEO,2009		$< 6 imes 10^{-4}$

J/ψ : none

 $\boldsymbol{\psi}'$: $K_S^0 X$ (BES3, 2021) PDG not record yet

Dong Xiao (LZU)


Inclusive decays at BESIII

	D ⁰ / D ⁺	D_s^+	Λ_c^+	Others (J/ψ, ψ', hyperon)
Single charged track		$Xe^+\nu_e$	$Xe^+\nu_e(2)$	
Multi charged tracks	$\pi^+\pi^+\pi^-X$	$\pi^+\pi^+\pi^-X$		
Long lived inter-particle	$K_S^0 X$		$\begin{bmatrix} \Lambda X \end{bmatrix} K_S^0 X$	$\psi(3686) \to K_S^0 X$
Short lived inter-particle	φΧ	$\eta' X$		$\Sigma^- \to \Sigma^+ X$
Neutron			$\overline{\Lambda}_c^- \to \overline{n}X$	

Will be introduced in this report.

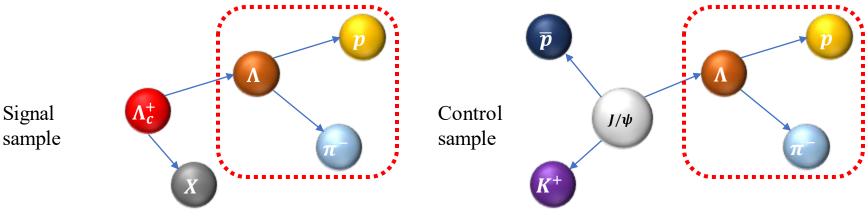
BESI

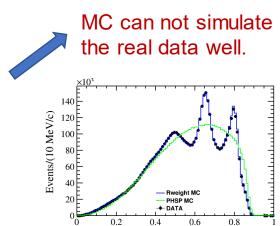
- Reasonability:
- The Λ_c are produced in pairs at threshold on BESIII, no other accompanied particles, 4-momentum conservation.

> Advantage:

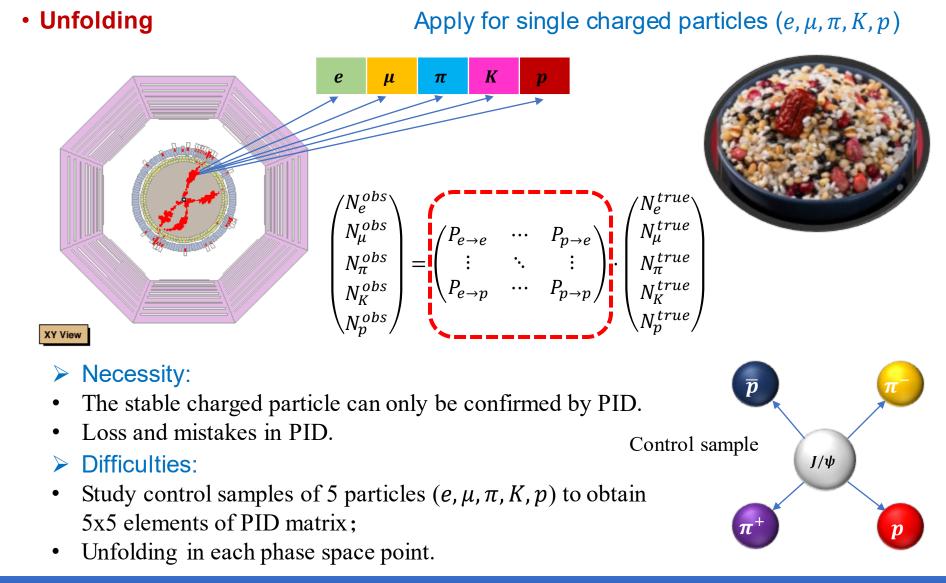
- Absolute BF, decay parameter, CPV;
- Less background than ST;
- Cancel out some systematic uncertainties.

• **Data driven** Using control sample from data to determine the efficiency of inclusive decay.

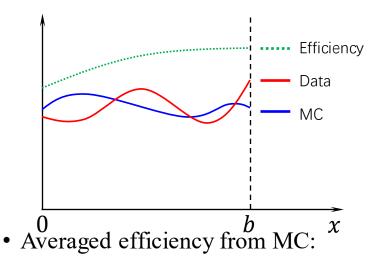

≻Necessity:


BESII

- The inclusive decay contains multiple exclusive decays, of which the phase space is complicated.
- There are still undiscovered exclusive decays.
- The efficiency in different phase space may vary greatly.


≻Reasonability:

• The detector doesn't matter the history of particles.



Р

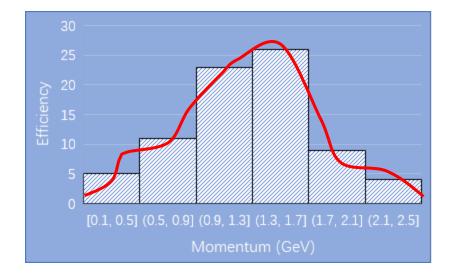
BES

Reweight

Suppose that a variable x distribute differently in MC and data: $\rho_{MC}(x) \quad \rho_{data}(x)$

Problem:

How much of the difference of yields between using the efficiency from MC N'_{data} and real data N_{data} ?


•
$$\overline{\varepsilon_{MC}} = \frac{n_{MC}}{N_{MC}} = \frac{\int_{b} N_{MC}(x)\varepsilon_{MC}(x)dx}{\int_{b} N_{MC}(x)dx} = \int_{b} \rho_{MC}(x)\varepsilon_{MC}(x)dx, \quad \rho_{MC}(x) = \frac{N_{MC}(x)}{\int_{b} N_{MC}(x)dx}$$

• Using averaged efficiency from MC to obtained the yields:

•
$$N_{data}' = \frac{n_{data}}{\overline{\varepsilon_{MC}}} = \frac{\int_{b} N_{data}(x)\varepsilon_{data}(x)dx}{\int_{b} \rho_{MC}(x)\varepsilon_{MC}(x)dx} = N_{data} \left(\frac{\int_{b} \rho_{data}(x)\varepsilon_{data}(x)dx}{\int_{b} \rho_{MC}(x)\varepsilon_{MC}(x)dx} \right) \rho_{data}(x) = \frac{N_{data}(x)}{\int_{b} N_{data}(x)dx}$$

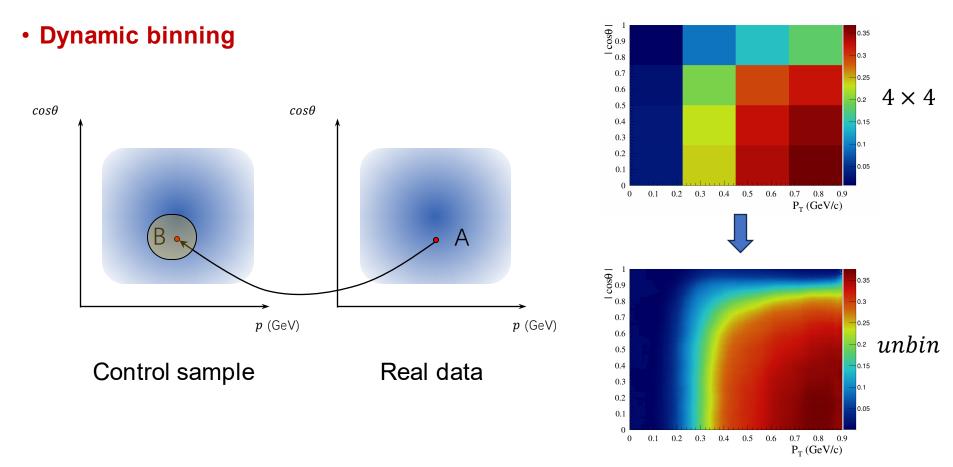
• Dynamic binning

The efficiency varies greatly in phase space.

$$\bar{\varepsilon} = \frac{\sum_{b_i} n_{b_i}}{\sum_{b_i} N_{b_i}}, \quad \varepsilon_{b_i} = \frac{n_{b_i}}{N_{b_i}}$$

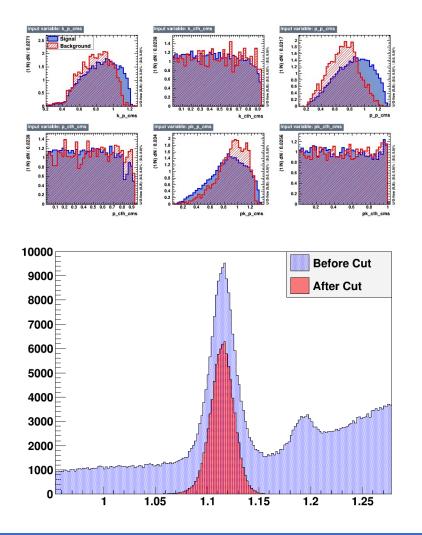
The averaged efficiency is influenced by the phase space distribution. If the efficiency varies largely, the binning scheme will bring sizable bias.

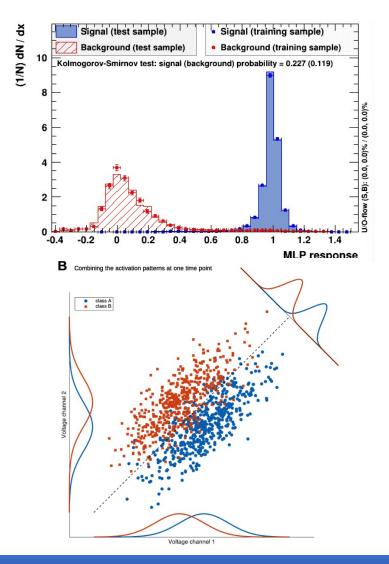
Loose binning => systematic uncertainty Tight binning => statistical uncertainty.


> Necessity:

- Efficiency varies with the phase space distribution, MC differs with data;
- The binning scheme will influence the uncertainty.

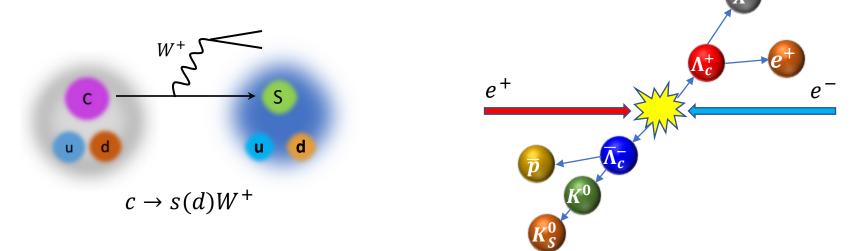
Difficulties:


• Reduce the sys. & sta. uncertainties simultaneously.


Dong Xiao (LZU)

• For a certain point A in the phase space of real data, we can look for its corresponding point B in the control sample, then calculate the efficiency using the neighborhood region of B. The systematic and statistic uncertainty can be balanced by varying the size of neighborhood of B.

Multivariate Analysis


Dong Xiao (LZU)

₿€SШ

$$\Lambda_{\rm c}^+ \to X e^+ \nu_e$$

• $\Lambda_c^+ \rightarrow Xe^+\nu_e$: Phys. Rev. Lett. 121 251801 X.Z. H, et al. BESIII 2018 Phys. Rev. D 107 052005 Lei Li, et al. BESIII 2023

In HQET, the $u_{,}d$ plays as passive quarks, the decay of Λ_c^+ is dominated by $c \to s$ transition, including are semi-leptonic channels $(e^+\nu_e \text{ or } \mu^+\nu_e)$ and non-leptonic channels $(\Lambda_{,} K_S^0, K^-)$

Example: $\Gamma(\Lambda_c^+ \to Xe^+\nu_e)/\Gamma(D^+ \to Xe^+\nu_e)$, theories provide different predictions, effective-quark predicts it to be 1.67, heavy-quark expansion predicts it to be 1.2. Precise measurement can distinguish different theories.

BESI

 $\Lambda_{\rm c}^+ \rightarrow X e^+ \nu_e$

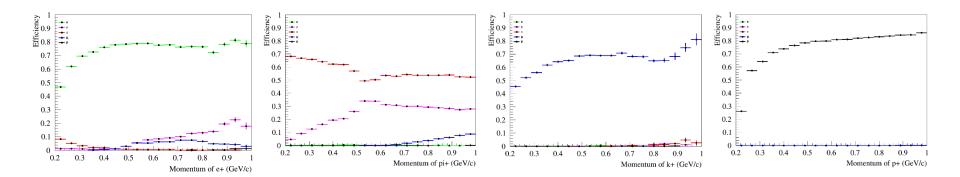
• PID Unfolding:

$$\begin{pmatrix} n_{e}^{obs} \\ n_{\mu}^{obs} \\ n_{\mu}^{obs} \\ n_{\kappa}^{obs} \\ n_{K}^{obs} \\ n_{p}^{obs} \end{pmatrix} = \begin{pmatrix} \varepsilon_{e \to e} & \varepsilon_{\mu \to e} & \varepsilon_{\pi \to e} & \varepsilon_{K \to e} & \varepsilon_{p \to e} \\ \varepsilon_{e \to \mu} & \varepsilon_{\mu \to \mu} & \varepsilon_{\pi \to \mu} & \varepsilon_{K \to \mu} & \varepsilon_{p \to \mu} \\ \varepsilon_{e \to K} & \varepsilon_{\mu \to K} & \varepsilon_{\pi \to K} & \varepsilon_{K \to K} & \varepsilon_{p \to K} \\ \varepsilon_{e \to p} & \varepsilon_{\mu \to p} & \varepsilon_{\pi \to p} & \varepsilon_{K \to p} & \varepsilon_{p \to p} \end{pmatrix} \cdot \begin{pmatrix} N_{e}^{truth} \\ N_{\mu}^{truth} \\ N_{\pi}^{truth} \\ N_{K}^{truth} \\ N_{K}^{truth} \\ N_{p}^{truth} \end{pmatrix}$$

Basic idea: matrix inversion to estimate the number of each kind of particle.

Dong Xiao (LZU)

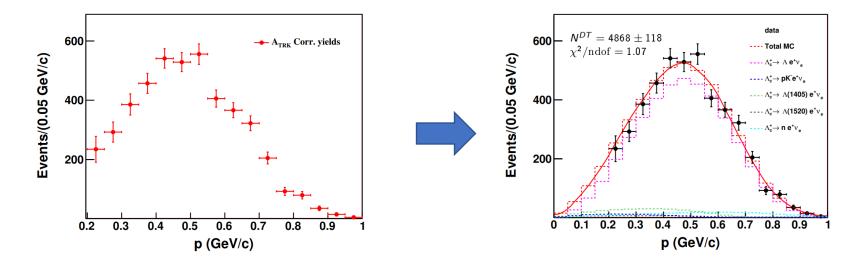
BESIII


 $\Lambda_{c}^{+} \rightarrow Xe^{+}\nu_{e}$

Control sample:

Pure control sample is essential for PID unfolding:

▶
$$e^{\pm}$$
: $e^+e^- \to \gamma e^+e^-$;
▶ π^{\pm} : $J/\psi \to K^+K^-\pi^+\pi^-(\pi^0)$ and $J/\psi \to p\bar{p}\pi^+\pi^-(\pi^0)$;
▶ K^{\pm} : $J/\psi \to K^+K^-\pi^+\pi^-(\pi^0)$ and $J/\psi \to K^+K^-K^+K^-(\pi^0)$.
▶ $p(\bar{p})$: $J/\psi \to p\bar{p}\pi^+\pi^-(\pi^0)$.

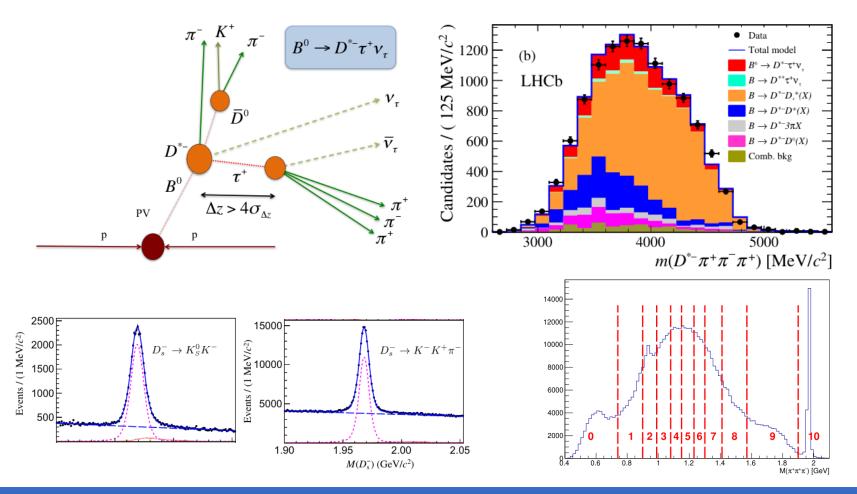

Then calculate the efficiency for each track identified as a certain particle.

$\Lambda_{\rm c}^+ \rightarrow X e^+ \nu_e$

Inverse & extension:

By solving the matrix equation, the yield of $\Lambda_c^+ \to Xe^+\nu_e$ can be obtained.

The electron with momentum below 0.2 GeV can not be detected by the spectrometer, the efficiency is extremely low. Extension to the whole region is essential to obtain the total yield.


Latest result from BESIII is $\mathcal{B}(\Lambda_c^+ \to Xe^+\nu_e) = (4.06 \pm 0.10 \pm 0.09)\%$, the ratio with $D^+ \to Xe^+\nu_e$ is 1.28 ± 0.05 . **Effective-quark theory:** 1.67 [Phys. Rev. D 107, 052005] Heavy-quark expansion theory: 1.2

BESIII

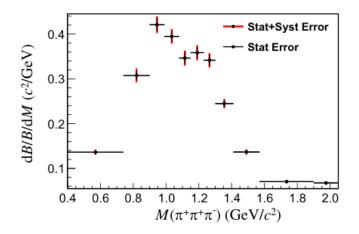
 $D_s^+ \to \pi^+ \pi^+ \pi^- X$

• $D_s^+ \rightarrow \pi^+ \pi^- \pi^- X$: Phys. Rev. D 108 032001 H.Cai, L.Y. Dong, L. Sun, et al. BESIII 2023

Estimate the leading background in $B^0 \rightarrow D^{*-}\tau^+\nu_{\tau}$, $\tau^+ \rightarrow \pi^+\pi^-\nu_{\tau}$ (test LFU).

Dong Xiao (LZU)

₩S

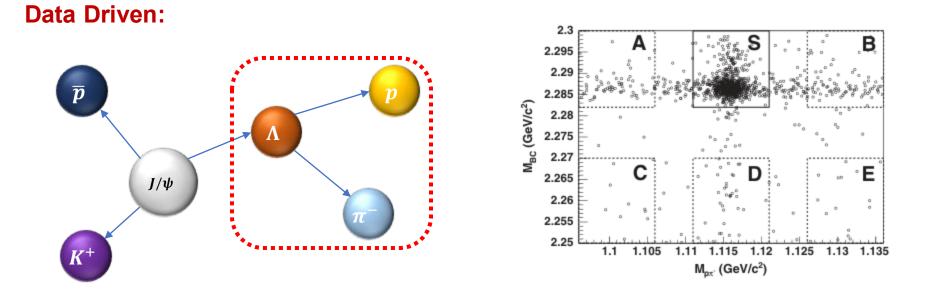

 $D_s^+ \rightarrow \pi^+ \pi^+ \pi^- X$

• $D_s^+ \rightarrow \pi^+ \pi^+ \pi^- X$:

$M(\pi^+\pi^+\pi^-)$ interval	1	2	3	4	5	6
Raw yield	2300.8 ± 71.1	2883.4 ± 85.8	2405.7 ± 77.6	2630.0 ± 81.3	1944.3 ± 70.6	2276.2 ± 74.3
K_S^0 contribution MisID contribution Total background	$\begin{array}{c} 59.1 \pm 1.3 \\ 190.1 \pm 2.4 \\ 249.2 \pm 2.7 \end{array}$	$\begin{array}{c} 148.2\pm2.1\\ 297.3\pm3.0\\ 445.5\pm3.6\end{array}$	$\begin{array}{c} 115.0 \pm 1.8 \\ 214.6 \pm 2.5 \\ 329.6 \pm 3.1 \end{array}$	$\begin{array}{c} 93.6 \pm 1.7 \\ 226.6 \pm 2.6 \\ 320.2 \pm 3.1 \end{array}$	$\begin{array}{c} 47.7 \pm 1.2 \\ 164.3 \pm 2.2 \\ 212.0 \pm 2.5 \end{array}$	$\begin{array}{c} 48.4 \pm 1.2 \\ 171.8 \pm 2.2 \\ 220.2 \pm 2.5 \end{array}$
Background subtracted yield	2051.6 ± 71.1	2437.9 ± 85.9	2076.1 ± 77.7	2309.8 ± 81.4	1732.2 ± 70.7	2056.0 ± 74.4
$M(\pi^+\pi^+\pi^-)$ interval	7	8	9	10	11	
Raw yield	1924.3 ± 65.2	2182.5 ± 68.8	1926.0 ± 65.5	1993.0 ± 63.7	767.7 ± 34.0	
<i>K</i> ⁰ _{<i>S</i>} contribution MisID contribution Total background	$\begin{array}{c} 31.1 \pm 1.0 \\ 127.5 \pm 1.9 \\ 158.7 \pm 2.2 \end{array}$	$\begin{array}{c} 36.9 \pm 1.0 \\ 169.0 \pm 2.2 \\ 205.9 \pm 2.5 \end{array}$	$\begin{array}{c} 31.1 \pm 1.0 \\ 168.3 \pm 2.2 \\ 199.4 \pm 2.4 \end{array}$	$\begin{array}{c} 10.7 \pm 0.6 \\ 126.3 \pm 1.9 \\ 137.0 \pm 2.0 \end{array}$	$\begin{array}{c} 1.4 \pm 0.2 \\ 3.9 \pm 0.3 \\ 5.3 \pm 0.4 \end{array}$	
Background subtracted yield	1765.6 ± 65.2	1976.6 ± 68.8	1726.6 ± 65.5	1856.0 ± 63.7	762.4 ± 34.0	

Results:

$$\mathcal{B}(D_s^+ \to \pi^+ \pi^- X) = (32.81 \pm 0.35_{\text{stat}} \pm 0.63_{\text{syst}})\%.$$


 $\Lambda_{c}^{+} \rightarrow \Lambda X$

• $\Lambda_c^+ \rightarrow \Lambda X$: D. Xiao, et al. BESIII 2018

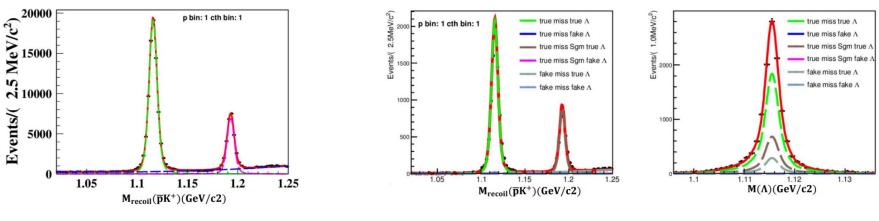
Sum of all exclusive: $(30.1\pm1.2)\%$.

 $\begin{array}{c} W^{+} \\ W^{+} \\ S \\ u \end{array}$

Challenge: efficiency of Λ reconstruction.

BESII

$$\Lambda_{\rm c}^+ \to \Lambda X$$


Control sample & binning:

Taking advantage of high statistics of J/ψ (10¹⁰)

Control channel:

$$J/\psi \to \bar{p}K^+\Lambda$$

Fit the spectrum of recoil mass of \bar{p} and K^+ before find a Λ :

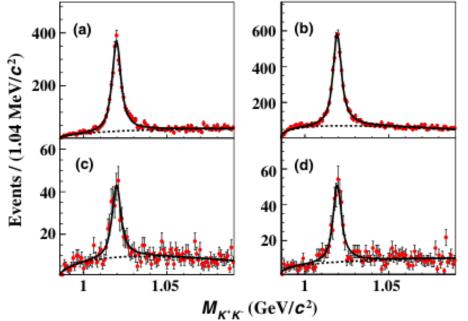
Results:

 K^+

 J/ψ

Then fit the $M_{recoil}(\bar{p}K^+)$ v.s. $M_{p\pi^-}(\Lambda)$ after finding a Λ . $\mathcal{B}(\Lambda_c^+ \to \Lambda + X) = (38.2^{+2.8}_{-2.3})\%$

Dong Xiao (LZU)


₩S

 $D^{0/+} \rightarrow \phi X$

• $D^{0/+} \to \phi X$: Phys. Rev. D 100 072006

The efficiency is also obtained from MC. The remaining difference between data and MC is studied with data-driven hadronic events.

Fit & sideband subtraction

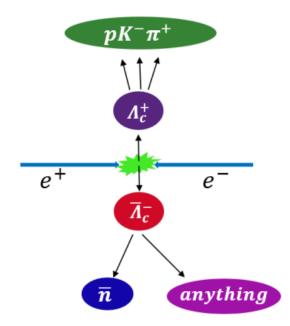
S.Q. Qu, J.H. Wei, et al. BESIII 2019

Decay mode	\mathcal{B}
$\overline{D^+ o \phi \pi^+ \pi^0}$	$(2.3 \pm 1.0)\%$
$D^+ ightarrow \phi ho^+$	< 1.5%
$D^+ o \phi \pi^+$	$(5.70 \pm 0.14) imes 10^{-3}$
$D^+ \to \phi K^+$	$(8.86 \pm 1.14) \times 10^{-6}$
Sum	$(2.87 \pm 1.00)\%$
$D^0 o \phi \gamma$	$(2.81 \pm 0.19) \times 10^{-5}$
$D^0 \to \phi K^0_S$	$(4.13 \pm 0.31) \times 10^{-3}$
$D^0 o \phi K_L^{0}$	$(4.13 \pm 0.31) \times 10^{-3}$
$D^0 o \phi \omega$	$< 2.1 \times 10^{-3}$
$D^0 \to \phi(\pi^+\pi^-)_{\text{S-wave}}$	$(20 \pm 10) \times 10^{-5}$
$D^0 \rightarrow (\phi \rho^0)_{\text{S-wave}}$	$(14.0 \pm 1.2) \times 10^{-4}$
$D^0 \to (\phi \rho^0)_{\text{D-wave}}$	$(8.5 \pm 2.8) \times 10^{-5}$
$D^0 \rightarrow (\phi \rho^0)_{\text{P-wave}}$	$(8.1 \pm 3.8) \times 10^{-5}$
$D^0 o \phi \pi^0$	$(1.17 \pm 0.04) \times 10^{-3}$
$D^0 o \phi \eta$	$(1.81 \pm 0.46) \times 10^{-4}$
Sum	$(1.14 \pm 0.09)\%$

Results:

	This work	CLEO [2]
$D^+ \to \phi X$	$1.135 \pm 0.034 \pm 0.031$	$1.03 \pm 0.10 \pm 0.07$
$D^0 \rightarrow \phi X$	$1.091 \pm 0.027 \pm 0.035$	$1.05 \pm 0.08 \pm 0.07$

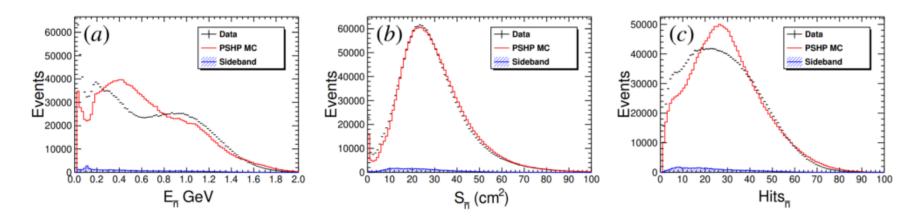
Dong Xiao (LZU)

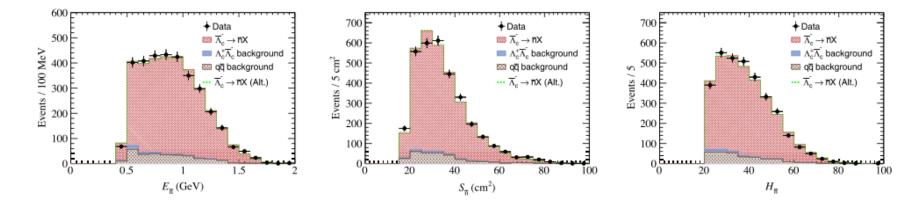

BESI	Ι	$\rightarrow \overline{n}X$		
• $\overline{\Lambda}_{c}^{-} \rightarrow \overline{i}$	π X :	<u>Phys. Rev. D 108 L031101</u>	L.Q. Zhang, et al. I	BESIII 2023
Γ77	p anything		$(50\pm16)\%$	from DDC
Γ_{78}	n anything		$(50\pm16)\%$	Irom PDG
			· · · · ·	from PDG

The sum of exclusive decays of $\Lambda_c^+ \rightarrow pX$ and $\Lambda_c^+ \rightarrow nX$ are 44.5%, 25.4%. Precise determination of inclusive decay may help search for undiscovered exclusive decays.

Tag mode:

Only choose the $\Lambda_c^+ \rightarrow pK^-\pi^+$ as tag mode. (Highest statistics, lowest background)


- **Control sample:** choose $J/\psi \rightarrow p\bar{n}\pi^-$.
- $E_{\bar{n}} > 0.48 \, GeV$
- Number of hits $Hits_{\bar{n}} > 20$
- second moment $S_{\bar{n}} > 18 \ cm^2$
- $N_{\bar{p}}=0$



 $\Lambda_{c}^{-} \rightarrow \overline{n}X$

Reweight:

Discrepancy between MC and data => Reweight the MC using data-driven.

Results: $\mathcal{B}(\bar{\Lambda}_c^- \to \bar{n} + X) = (32.4 \pm 0.7 \pm 1.5)\%$ **Sum of exclusive:** $(25.4 \pm 0.8)\%$

Summary & Prospect

- BESIII has obtained a series of achievement on inclusive decays, mature analytical techniques are developed.
- Inclusive decays of Λ_c^+ are widely studied, on-going analyses:

• $\Lambda_c^+ \to \Lambda X$, $\Lambda_c^+ \to K_S^0 X$, $\Lambda_c^+ \to p X$, $\Lambda_c^+ \to \Sigma^+ X$, $\Lambda_c^+ \to \Sigma^0 X$, $\Lambda_c^+ \to X \mu^+ \nu_{\mu}$

- Inclusive decays of charmed meson are performed mainly on BES2 and CLEO, waiting for update:
 - $D^{0/+} \rightarrow Xe^+\nu_e$, $D^{0/+} \rightarrow X\mu^+\nu_\mu$, $D^{0/+} \rightarrow K^{\pm}X...$
- Inclusive decays of charmonium remain blank, possible analyses:
 - $J/\psi \rightarrow pX$, $J/\psi \rightarrow nX$, $J/\psi \rightarrow K_S^0 X...$
- Some BNV channels can be searched via inclusive decay:
 - $J/\psi \rightarrow \Lambda_c^+ X$, $J/\psi \rightarrow ppX$, $D^{0/+} \rightarrow pX...$

For J/Ψ

Summary & Prospect

Dataset at BESIII: (from <u>BESIII physics page</u>)

Sample type	Ecms (GeV)	Run ID	Event number (Int. luminosity)
On-J/ψ (2009)	3.097	9947-10878	224.0±1.3M (80 pb-1)
On-J/ψ (2012)	3.097	27255-28236	1088.5±4.4M (315 pb-1)
On-J/ψ (2017-2019)	3.097	52940-54976 55861-56546 56788-59015	8774.0±39.4M (2571 pb-1)

For	Ψ	(3686)	
-----	---	--------	--

Sample type	Ecms (GeV)	Run ID	Event number (Int. luminosity)
On-ψ(3686) (2009)	3.686	8093-9025	107.0±0.8M (161.63±0.13 pb-1)
On-ψ(3686) (2012)	3.686	25338-27090	341.1±2.1M (506.92±0.23 pb-1)

For $\Psi(3770)$

Sample type	Ecms (GeV)	Run ID	Int. luminosity	
On-ψ(3770) <mark>(</mark> 2010)	3.773	11414-13988 14395-14604	2931.8±0.2±13.8 pb-1	
On-ψ(3770) (2011)		20448-23454	-	

For above 4.6 GeV:

Energy points	4.600 GeV	4.612 GeV	4.628 GeV	4.641 GeV	4.661 GeV	4.682 GeV	4.698 GeV
$Lumi(pb^{-1})$	566.90	103.45	519.93	548.15	527.55	1664.34	534.40

BESIII is an ideal platform to study inclusive decay!

Eager for theoretical research!

Thanks for your attention!