

Strong decays of the $\Lambda_c(2910)$ and $\Lambda_c(2940)$ in D^*N molecular picture

Reporter: Zi-Li Yue

2023.12.17

全国第十二届重味物理和CP破坏研讨会 Based on Zi-Li Yue, Dian-Yong Chen, ...to appear

Outline

Background

- Molecular Scenario
- > The Strong Decay of the Λ_c
- Numerical Results and Discussions
- > Summary

Conventional hadrons

 $Meson(q\bar{q})$, Baryon(qqq)

Exotic states

Molecular states: loosely bound states composed of a pair of hadrons, bound by residual interactions of strong interactions.(Candidates: X(3872), D_{s1}(2460), X(3915)...)

- Tetraquarks: $qq\bar{q}\bar{q}$
- Pentaquarks: $qqqq\bar{q}$
- Hybrids: $q\bar{q}g$
- Glueballs: *gg/ggg*

Phys.Lett. 8 (1964) 214-215

The Discovery of the $\Lambda_c(2940)^+$.

Phys.Rev.Lett. 98 (2007) 012001

Phys.Rev.Lett. 98 (2007) 262001

Intrinsic parameters: $m_{\Lambda_c(2940)^+} = 2939.6^{+1.3}_{-1.5}$ MeV, $\Gamma_{\Lambda_c(2940)^+} = 20^{+6}_{-5}$ MeV.

 $\Lambda_c(2910)^+$ in $\overline{B}^0 \rightarrow \Sigma_c(2455)^{0,++}\pi^{\pm}\bar{p}$ process.

Phys.Rev.Lett. 130 (2023) 3, 031901

Intrinsic parameters: $m_{\Lambda_c(2910)^+} = 2913.8 \pm 5.6 \pm 3.8$ MeV, $\Gamma_{\Lambda_c(2910)^+} = 51.8 \pm 20. \pm 18.8$ MeV.

Theoretical work on Λ_c states: $m_{D^*} + m_N - m_{\Lambda_c}(2910) \sim 30$ MeV; $m_{D^*} + m_N - m_{\Lambda_c}(2940) \sim 6$ MeV;

D*N molecular states:

- ➤ Eur.Phys.J.C 51 (2007) 883-889: D*N molecular with $J^p = \frac{1}{2}^{-}$, decay,
- Phys.Rev.D 81 (2010) 014006,
- > Phys.Rev.D 83 (2011) 094005: D*N molecular with $J^p = \frac{1}{2}^+$, decay,
- ▶ Phys.Rev.D 107 (2023) 3, 034036: conventional baryons dressed with the D*N channel,
- ≻ Eur.Phys.J.C 83 (2023) 6, 524: Λ_c (2940) composed of D*N with J^p = $\frac{3}{2}^-$...

Others explaination:

For $\Lambda_c(2910)$:

- > Eur.Phys.J.C 82 (2022) 10, 920 $\Lambda_{c}(2P, 1/2^{-})$ state,
- ➢ Phys.Rev.D 106 (2022) 7, 074020 Candidate of Λ_c|J^P = 5/2[−]⟩_ρ...

For $\Lambda_c(2940)$:

- > Phys.Rev.D 75 (2007) 094017:D-wave charmed baryon with $J^P = \frac{1}{2}^+$ or $\frac{3}{2}^+$,
- > Phys.Lett.B 659 (2008) 612-620: $\Lambda_c(2286)$ + first orbital excitation...

Phys.Rev.D 100 (2019) 1, 014022, Phys.Rev.D 100 (2019) 11, 114002,

SetA:
$$\Lambda_c(2910) J^P = \frac{1}{2}^{-}, \Lambda_c(2940) J^P = \frac{3}{2}^{-}.$$

SetB: $\Lambda_c(2940) J^P = \frac{1}{2}^{-}, \Lambda_c(2910) J^P = \frac{3}{2}^{-}.$

The mass spectrum of P_c states and Λ_c states.

Molecular scenario

• Effective Lagrangian: $\mathcal{L}_{\Lambda_{c}(1/2^{-})}$

$$=g_{\overline{\Lambda}_{c}D^{*}N}^{1/2^{-}}\overline{\Lambda}_{c}(x)\gamma^{\mu}\gamma^{5}\int dy \phi(y^{2}) \left[D_{\mu}^{*0}(x+\omega_{pD^{*0}}y)p(x-\omega_{D^{*0}p}y)+D_{\mu}^{*+}(x+\omega_{nD^{*+}}y)n(x-\omega_{D^{*+}n}y)\right]$$

+ H. c.

 $\mathcal{L}_{\Lambda_c(3/2^-)}$

$$=g_{\overline{\Lambda}_{c}D^{*}N}^{3/2^{-}}\overline{\Lambda}_{c}^{\mu}(x)\int dy \phi(y^{2}) \left[D_{\mu}^{*0}(x+\omega_{pD^{*0}}y)p(x-\omega_{D^{*0}p}y)+D_{\mu}^{*+}(x+\omega_{nD^{*+}}y)n(x-\omega_{D^{*+}n}y)\right]+\text{H.c.}$$

Correlation function:

- ✓ Fourier transformation: $\phi(y^2) = \int \frac{d^4p}{(2\pi)^4} e^{-ipy} \tilde{\phi}(-p^2)$,
- \checkmark describe the interior structure of the molecular state,
- \checkmark fall fast enough in the ultraviolet region,
- ✓ Gaussian form: $\tilde{\phi}(p_E^2) = \exp(-p_E^2/\Lambda^2)$.

Molecular scenario

•Compositeness condition:
$$Z = \langle Bare | Phys \rangle = 0, Z = 1 - \Pi' \left(m_{T_{c\bar{s}0}}^2 \right) = 0 \Rightarrow g_{\bar{\Lambda}_c}.$$

9

The possible decay mode:

 $\bullet \Lambda_c \to (c\overline{u})(uud), (u\overline{u})(cud), (\overline{u}d)(cuu), (u\overline{d})(cdd) \dots$

	Final states	process	
$\frac{1}{2}^{-}$	ND	$1/2^- \to 0^- + 1/2^+$	S-wave
	$\Sigma_c \pi$	$1/2^- \to 0^- + 1/2^+$	S-wave
	$\Sigma_{\mathcal{C}}^{*}\pi$	$1/2^- \rightarrow 0^- + 3/2^+$	D — wave
$\frac{3}{2}^{-}$	ND	$3/2^- \rightarrow 0^- + 1/2^+$	D — wave
	$\Sigma_c \pi$	$3/2^- \rightarrow 0^- + 1/2^+$	D-wave
	$\Sigma_{\mathcal{C}}^{*}\pi$	$3/2^- \rightarrow 0^- + 3/2^+$	S-wave

All the decay mode of the Λ_c at the hadron level.

All the possible specific decay channels of the Λ_c

J^P	Final states	loops		
$\frac{1}{2}^{-}$	ND	$[ND^*\pi], [ND^*\eta], [ND^*\rho], [ND^*\omega]$		
	$\Sigma_c^{(*)+}\pi^0$	$[pD^{*0}\bar{D}^0], [pD^{*0}\bar{D}^{*0}], [nD^{*+}D^{-}], [nD^{*+}D^{*-}], [D^{*0}p\bar{\Delta}^{+}], [D^{*0}p\bar{p}], [D^{*+}n\bar{\Delta}^0], [D^{*+}n\bar{n}]$		
	$\Sigma_c^{(*)++}\pi^-$	$[pD^{*0}D^{-}], [pD^{*0}D^{*-}], [D^{*+}n\bar{\Delta}^{+}], [D^{*+}n\bar{p}], [D^{*0}p\bar{\Delta}^{++}]$		
	$\Sigma_c^{(*)0}\pi^+$	$[nD^{*+}\bar{D}^0], [nD^{*+}\bar{D}^{*0}], [D^{*0}p\bar{\Delta}^0], [D^{*0}p\bar{n}], [D^{*+}n\bar{\Delta}^-]$		
$\frac{3}{2}^{-}$	ND	$[ND^*\pi], [ND^*\eta], [ND^*\rho], [ND^*\omega]$		
	$\Sigma_c^{(*)+}\pi^0$	$[pD^{*0}\bar{D}^{0}], [pD^{*0}\bar{D}^{*0}], [nD^{*+}D^{-}], [nD^{*+}D^{*-}], [D^{*0}p\bar{\Delta}^{+}], [D^{*0}p\bar{p}], [D^{*+}n\bar{\Delta}^{0}], [D^{*+}n\bar{n}]$		
	$\Sigma_c^{(*)++}\pi^-$	$[pD^{*0}D^{-}], [pD^{*0}D^{*-}], [D^{*+}n\bar{\Delta}^{+}], [D^{*+}n\bar{p}], [D^{*0}p\bar{\Delta}^{++}]$		
	$\Sigma_c^{(*)0}\pi^+$	$[nD^{*+}\bar{D}^0], [nD^{*+}\bar{D}^{*0}], [D^{*0}p\bar{\Delta}^0], [D^{*0}p\bar{n}], [D^{*+}n\bar{\Delta}^-]$		

The strong decay of the Λ_c

• Effective Lagrangian: *SU*(4) symmetry:

$$\begin{split} \mathcal{L}_{\mathcal{B}\mathcal{B}\mathcal{P}} &= -\frac{g_{\mathcal{B}\mathcal{B}\mathcal{P}}}{m_{p}} \overline{\mathcal{B}} \gamma^{\mu} \gamma_{5} \partial_{\mu} \mathcal{P} \mathcal{B} \\ \mathcal{L}_{\mathcal{B}\mathcal{B}\mathcal{V}} &= -g_{\mathcal{B}\mathcal{B}\mathcal{V}} \overline{\mathcal{B}} \gamma_{\mu} \mathcal{V}^{\mu} \mathcal{B} \\ \mathcal{L}_{\mathcal{B}\mathcal{D}\mathcal{P}} &= \frac{g_{\mathcal{B}\mathcal{D}\mathcal{P}}}{m_{\mathcal{P}}} (\overline{\mathcal{D}}^{\mu} \mathcal{B} - \overline{\mathcal{B}} \mathcal{D}^{\mu}) \partial_{\mu} \mathcal{P} \\ \mathcal{L}_{\mathcal{B}\mathcal{D}\mathcal{V}} &= -i \frac{g_{\mathcal{B}\mathcal{D}\mathcal{V}}}{m_{\mathcal{V}}} (\overline{\mathcal{D}}^{\mu} \gamma^{5} \gamma^{\nu} \mathcal{B} - \overline{\mathcal{B}} \gamma^{5} \gamma^{\nu} \mathcal{D}^{\mu}) (\partial_{\mu} \mathcal{V}_{\nu} - \partial_{\nu} \mathcal{V}_{\mu}) \\ \mathcal{L}_{\mathcal{B}\mathcal{D}\mathcal{V}} &= \overline{\mathcal{D}}_{\alpha} \gamma^{\nu} \mathcal{V}_{\nu} \mathcal{D}^{\alpha} \\ \mathcal{L}_{\mathcal{P}\mathcal{P}\mathcal{V}} &= -i g_{\mathcal{P}\mathcal{P}\mathcal{V}} (\mathcal{P} \partial_{\mu} \mathcal{P} - \partial_{\mu} \mathcal{P} \mathcal{P}) \mathcal{V}^{\mu} \\ \mathcal{L}_{\mathcal{V}\mathcal{V}\mathcal{P}} &= g_{\mathcal{V}\mathcal{V}\mathcal{P}} \epsilon_{\mu\nu\alpha\beta} \partial^{\mu} \mathcal{V}^{\nu} \partial^{\alpha} \mathcal{V}^{\beta} \mathcal{P} \end{split}$$

• Form factor:

$$\mathcal{F}(m_q, \Lambda_1) = \frac{\Lambda_1^4}{(m^2 - q^2)^2 + \Lambda_1^4},$$

•Loop Integral:

$$C_0 = \int \frac{d^4 q}{(2\pi)^4} \widetilde{\Phi} \frac{1}{[p_1^2 - m_1^2][p_2^2 - m_2^3][q^2 - m_q^2]}$$

Schwinger parametrization:

$$\frac{1}{m^2 - k^2} = \int_0^\infty d\alpha e^{-\alpha(m^2 - k^2)}$$

• Decay width:

$$\Gamma_{\Lambda_c \to \cdots} = \frac{1}{(2J+1)8\pi} \frac{|\vec{p}|}{m_{\Lambda_c}^2} \left| \overline{\mathcal{M}_{\Lambda_c}} \to \cdots \right|^2$$

Numerical Results and discussions

Conclusions:

- The estimations is consistent with the experiment measurement in parameter Λ_1 from 0.74 0.81;
- In this assignment, the dominant decay channel for $\Lambda_c(2910)$ is $\Sigma_c \pi$ and for $\Lambda_c(2940)$ is $\Sigma_c^* \pi$;

• Branching ratio: $\text{Br}(AB) = \Gamma_{AB} / \Gamma_{tot}$; For $\Lambda_c(2910)$: Br(ND) = 0.39 - 0.56%, $\text{Br}(\Sigma_c \pi) = 97.9 - 98.2\%$, $\text{Br}(\Sigma_c^* \pi) = 1.35 - 1.53\%$; For $\Lambda_c(2940)$: Br(ND) = 1.9 - 2.4%, $\text{Br}(\Sigma_c \pi) = 13.8 - 14\%$, $\text{Br}(\Sigma_c^* \pi) = 83.7 - 84\%$. 15

- $Br(\Sigma_c^*\pi) = 83.7 84\%$ Large branching ratio for $\Lambda_c(2940)!$
- Experiment could look for $\Lambda_c(2940)$ in the $\Sigma_c^*\pi$ invariant mass spectrum.

Numerical Results and discussions

17

Conclusions:

- The estimations is consistent with the experiment measurement in parameter Λ_1 from 0.75 0.76;
- In this assignment, the dominant decay channel for $\Lambda_c(2910)$ is $\Sigma_c^*\pi$ and for $\Lambda_c(2940)$ is $\Sigma_c\pi$;

• Branching ratio: $\text{Br}(AB) = \Gamma_{AB} / \Gamma_{tot}$; For $\Lambda_c(2910)$: Br(ND) = 1.44 - 1.49%, $\text{Br}(\Sigma_c \pi) = 12.4 - 12.5\%$, $\text{Br}(\Sigma_c^* \pi) = 0.86\%$; For $\Lambda_c(2940)$: Br(ND) = 0.34 - 0.38%, $\text{Br}(\Sigma_c \pi) = 98.3\%$, $\text{Br}(\Sigma_c^* \pi) = 1.26 - 1.27\%$.

家家家家 家家 大学·物理学院 School of Physics Southeast UNIVERSITY

- 1. The present work investigate the strong decay behavior the $\Lambda_c(2940)$ and $\Lambda_c(2910)$ in D^*N molecular scenario by using the effective Lagrangian approach;
- 2. We estimate the partial decay width of $\Lambda_c \to ND$ and $\Lambda_c \to \Sigma_c^{(*)}\pi$;
- 3. By comparing our calculations with experiment measurements, the J^P for $\Lambda_c(2910)$ prefers $\frac{1}{2}^-$ and for $\Lambda_c(2940)$, the $J^P = \frac{3}{2}^-$ is weakly favored.

Thank you for your attention!