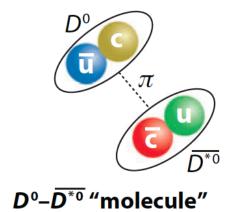
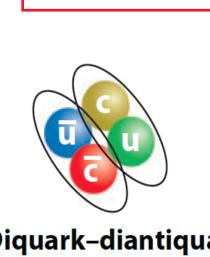
Observation of structure in the $J/\psi J/\psi$ mass spectrum at CMS

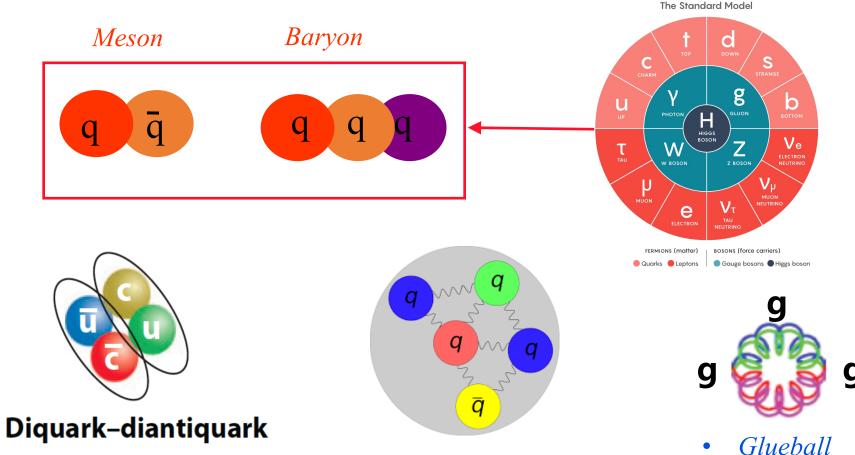
Kai Yi (Nanjing Normal University)

全国第二十届重味物理和CP破坏研讨会, HFCPV-2023

18 Dec 2023, Shanghai, China


Outline


- History
 - About exotic hadron
 - New Domain of Exotics: All-Heavy Tetra-quarks
- CMS J/ψJ/ψ study arXiv:2306.07164
 - Data sample and event selections
 - Steps to identify structures
 - Result and systematics
 - Interpretation through interference models
- Summary
- Outlook


Exotic hadron

Quark model

"exotic" hadron

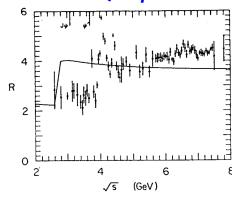
- Two possible extensions of mesons to tetra-quark states
- Possible penta-quark state

Gell-mann noted the possibility of "exotic" hadrons in classic 1964 paper

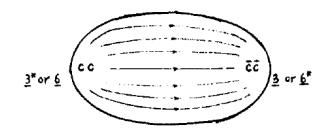
New Domain of Exotics: All-Heavy Tetra-quarks

- A different exotic system compared to exotics with light quarks
- First mention of 4c states at 6.2 GeV (1975): Y. Iwasaki, Prog. of Theo. Phys. Vol. 54, No. 2 (Just one year after the discovery of J/ψ)
- First calculation of 4c states (1981): K.-T. Chao, Z. Phys. C 7 (1981) 317

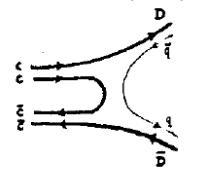
$(cc)_{\underline{3}}*-$	$(\overline{cc})_{\underline{3}} $
--------------------------	------------------------------------

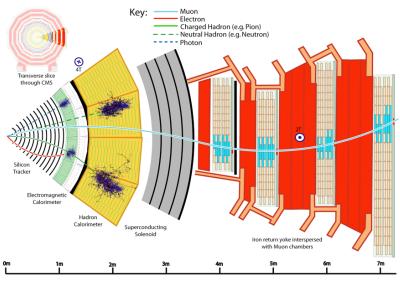

		<u> </u>	
\overline{L}	S	JPC	Mass (GeV
1	0 1 2	1 0-+, 1-+, 2-+ 1, 2, 3	6.55
2	0 1 2	2 ⁺⁺ 1 ⁺⁻ , 2 ⁺⁻ , 3 ⁺⁻ 0 ⁺⁺ , 1 ⁺⁺ , 2 ⁺⁺ , 3 ⁺⁺ , 4 ⁺⁺	6.78
3	0 1 2	3 2-+, 3-+, 4-+ 1, 2, 3, 4, 5	6.98

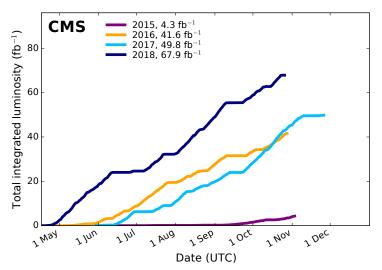
$$\frac{(cc)_{\underline{6}} - (cc)_{\underline{6}} *}{L \qquad S \qquad J^{PC} \qquad \text{Mass (GeV)}}$$


$$\frac{1}{2} \qquad 0 \qquad 1^{--} \qquad 6.82$$

$$\frac{2}{3} \qquad 0 \qquad 3^{--} \qquad 7.41$$


Data for R from SLAC-LBL collaboration. The curve is the QCD prediction for R.

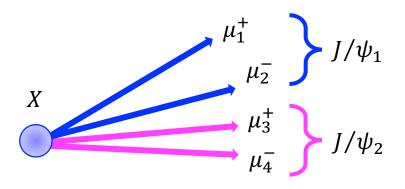

Linked by color electric flux in a bag


Possible two-body decays

The CMS detector & trigger

 η coverage (track & muon): [-2.5,2.5]

2016+2017+2018: ~145 fb-1


Excellent detector for (exotic) quarkonium:

- Muon system
 High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ψ
- Silicon Tracking detector, B=3.8T $\Delta p_T/p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analysis at increasing Inst. Lumi. μ p_T, $(\mu\mu)$ p_T, $(\mu\mu)$ mass, $(\mu\mu)$ vertex, and additional μ

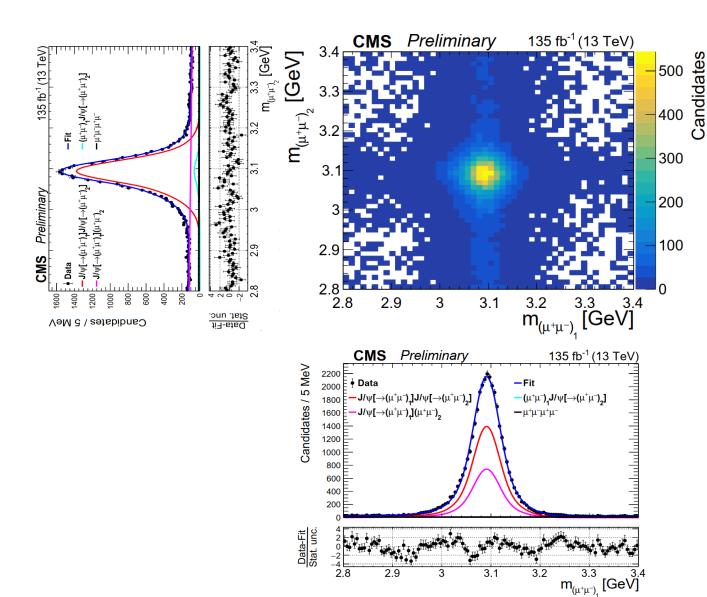
Data samples & Event selections

- ❖ 135 fb⁻¹ CMS data taken in 2016, 2017 and 2018 LHC runs
- Blinded signal region: [6.2,7.8] GeV

based on preliminary investigation on data collected in 2011-2012


```
p_T(\mu) > 2 \text{ GeV } (2016) \& p_T(\mu) > 3.5 \text{ GeV } (2017, 2018)
|\eta(\mu)| < 2.4
2.95~GeV \le M(\mu^+\mu^-) \le 3.25~GeV, then constrain to J/\psi mass
p_T(J/\psi) > 3.5 \text{ GeV}
Soft Muon ID (very loose)
Vertex Probability (\mu^+\mu^-\mu^+\mu^-) > 0.5\%
```

- Main selections:
 - Fire corresponding trigger in each year & offline selection
 - Multiple candidates' treatment:

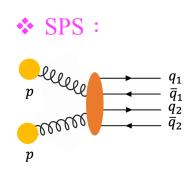

Select best combination of same 4μ (~0.2%) with

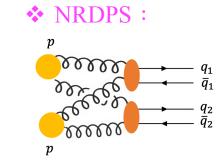
$$\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_2}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_2}}\right)^2$$

Keep all candidates arising from > 4μ (~0.2%)

Signal and background MC samples produced by Pythia8, JHUGen, HELAC-Onia...

J/ψ signal

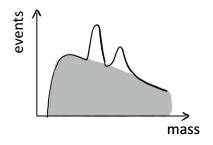

- Remove by J/ψ mass related cuts
- Clean J/ ψ signal as seen

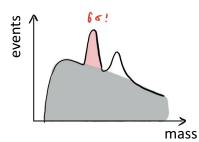

- ~15000 J/ ψ pairs after final selection (m(J/ ψ J/ ψ) <15 GeV)
- ~9000 J/ ψ pairs after final selection (m(J/ ψ J/ ψ) <9 GeV)

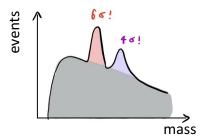
Steps to identify structures in $J/\psi J/\psi$ mass spectrum

- Null-hypothesis (initial baseline model): NRSPS+NRDPS
 - NRSPS—Non-Resonant Single Parton Scattering
 - NRDPS—Non-Resonant Double Parton Scattering

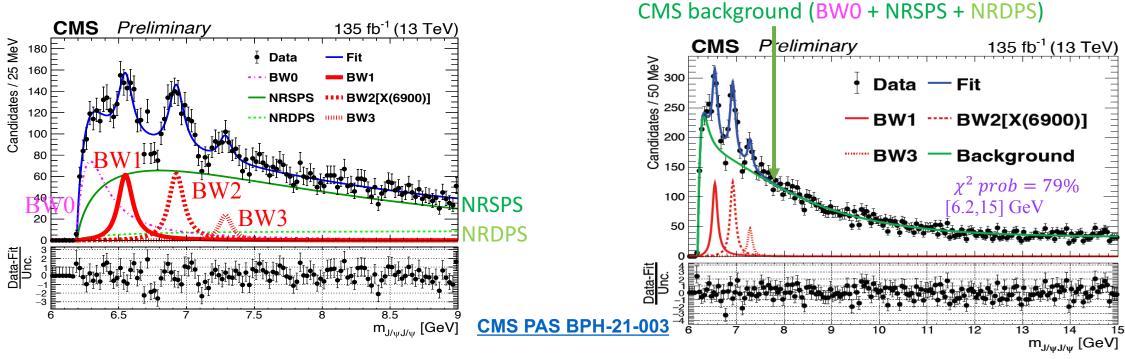
Add potential structures to baseline model

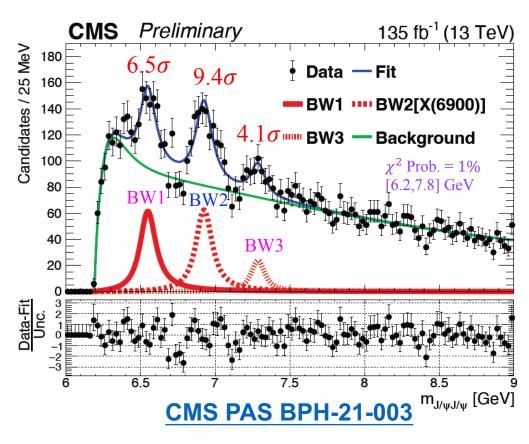

Add the most prominent structure to baseline model


Relativistic S-wave Breit-Wigner (BW) convolved with double-Gaussian resolution function for each structure Calculate its local significance


Local significance: standard likelihood ratio method

Keep it in baseline model only if $> 3\sigma$ significance


Repeat until no more $> 3\sigma$ structures



CMS background (BW0 + NRSPS + NRDPS)

- 4 significant structures: BW0, BW1, BW2, BW3
- Most significant structure in first step is BWO at the threshold, what is its meaning?
- Treat BWO as part of background due to:
 - Inadequacy of our NRSPS model at threshold
 - BW0 parameters are very sensitive to other model assumptions
 - A region populated by feed-down from possible heavier mass states
 - $X \rightarrow J/\psi \psi(2S) \rightarrow J/\psi J/\psi + \cdots$
- BW0+NRSPS+NRDPS as our background

Final CMS model: 3 BWs + Background (null)

BW1BW2BW3M [MeV] 6552^{+10}_{-10} 6927^{+9}_{-9} 7287^{+20}_{-18} Γ [MeV] 124^{+32}_{-26} 122^{+24}_{-21} 95^{+59}_{-40} N 470^{+120}_{-110} 492^{+78}_{-73} 156^{+64}_{-51}

- BW2[X(6900)] (9.4 σ) confirmation
- Observation of BW1 (6.5 σ)
- Evidence for BW3 (4.1 σ)

Statistical significance only Statistical significance based on: $2 \ln(L_0/L_{max})$

Significances including systematics

- To include systematics, alternative resonance/background shapes applied in the fit:
- Calculate signal- and null-hypothesis NLL_{syst} including systematic using:
 - $NLL_{syst-sig} = Min\{NLL_{nom-sig}, NLL_{alt-i-sig} + 0.5 + 0.5 \cdot \Delta dof\}$
 - NLL_{nom-sia} means the NLL of nominal 'signal hypothesis' fit.
 - NLL_{alt-i-sig} means the NLL of i-th alternative fit of 'signal hypothesis'
 - Δdof means the additional free parameters comparing to the nominal 'signal hypothesis' fit
 - $NLL_{syst-null} = Min\{NLL_{nom-null}, NLL_{alt-j-null} + 0.5 + 0.5 \cdot \Delta dof\}$
 - Significance including systematics as usual from $NLL_{syst-null} NLL_{syst-sig}$

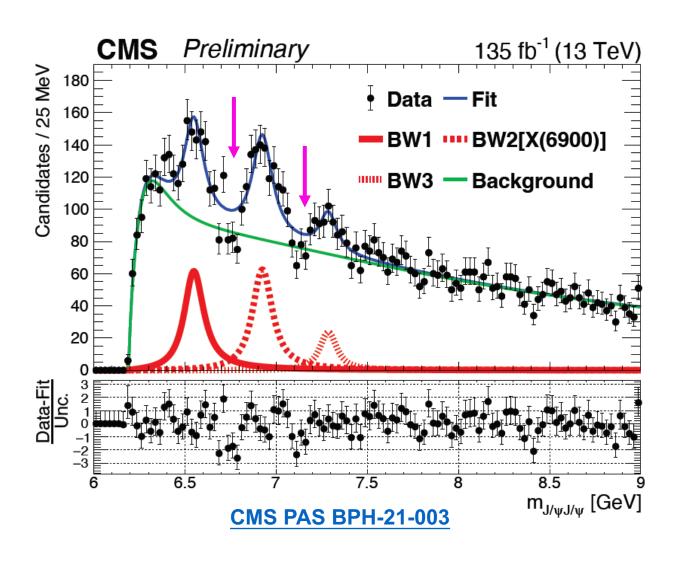
	Significance with syst.
BW1	5.7σ
BW2	no sensible changes
BW3	no sensible changes

- Investigated effects of systematics on local significance
 - Change: BW1 significance changed from 6.5σ to $>5.7\sigma$
 - No relative significance changes for BW2 and BW3

Summary of systematic uncertainties and CMS result

Table 2: Systematic uncertainties on masses and widths, in MeV.

Source	ΔM_{BW1}	ΔM_{BW2}	ΔM_{BW3}	$\Delta\Gamma_{BW1}$	$\Delta\Gamma_{BW2}$	$\Delta\Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	1	< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
momentum scaling	1	3	4	-	-	-
mass resolution	< 1	< 1	< 1	< 1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
efficiency	< 1	< 1	< 1	1	< 1	1
feeddown shape	11	1	1	25	8	6


> Total: sum in quadrature

CMS PAS BPH-21-003

CMS PAS BPH-21-003

_	M[BW1] = 6552^{+10+12}_{-10-12} MeV	$\Gamma[BW1] = 124^{+32+33}_{-26-33} \text{ MeV}$	>5.7 σ		X(6900) [LHCb] (somewhat different fit model)
	$M[BW2] = 6927^{+9+4}_{-9-4} MeV$	$\Gamma[BW2] = 122^{+24+18}_{-21-18} \text{ MeV}$	>9.4 σ	consistent	M[BW2]=6905±11±7 MeV
	$M[BW3] = 7287^{+20+5}_{-18-5}MeV$	$\Gamma[BW3] = 95^{+59+19}_{-40-19} \text{ MeV}$	>4.1 σ		$\Gamma[BW2] = 80 \pm 19 \pm 33 \text{ MeV}$

The dips

- > Possibility #1:
- Interference between structures?
- Why no interference for Y(nS) peaks?
 - Width too narrow to overlap
- Possibility #2:
- Multiple fine structures to reproduce the dips?
- Mentioned in PAS

- More secrets to dig out
- We explored possibility #1 in detail

Exploration of possible interference among BWs

- Explored fit with interference between various combinations of BWs
- Pdf for three BW interference

$$Pdf(m) = N_{X_0} \cdot |BW_0|^2 \bigotimes R(M_0)$$
 $+N_{X\ and\ interf} \cdot [r_1 \cdot e^{i\phi_1} \cdot BW_1 + BW_2 + r_3 \cdot e^{i\phi_3} \cdot BW_3]^2$ \longleftarrow Interf. term $+N_{NRSPS} \cdot f_{NRSPS}(m) + N_{NRDPS} \cdot f_{NRDPS}(m)$

- Many ways of interference due to possible J^{PC} and quantum coherence
 - 2-object-interference between BW0, BW1, BW2, BW3
 - 3-object-interference between BW0, BW1, BW2, BW3
 - 4-object-interference between BW0, BW1, BW2, BW3
- Our choice: interference between BW1, BW2, BW3
 - $\chi^2 \ prob < 30\% \ for 2-body$
 - No significant better description for 4-body
 - BW0 background-like

Summary of systematic for interf. case

- Total systematic uncertainty is quadrature sum of each source
- Systematic uncertainties from feed-down contribution are asymmetric
- Systematic uncertainties from other sources are symmetric

Fit	Dominant sources	$M_{ m BW_1}$	$M_{ m BW_2}$	$M_{ m BW_3}$	Γ_{BW_1}	Γ_{BW_2}	Γ_{BW_3}
Interference	Signal shape	7	12	7	56	8	7
	DPS shape	1	3	2	18	6	2
	NRSPS shape	9	14	13	85	9	20
	Mass resolution	8	4	1	24	7	13
	Combinatorial bkg.	7	2	<1	5	3	2
	T. 1.1	+0	+44	+38	+0	+19	+12
	Feed-down	-27	-0	-0	-210	-0	-0
	Total uncertainty	$^{+16}_{-31}$	$^{+48}_{-20}$	$^{+41}_{-15}$	$^{+110}_{-240}$	$^{+25}_{-17}$	$+29 \\ -26$

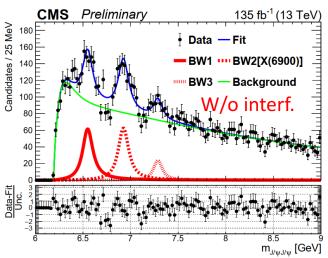
- Lager systematic uncertainties:
 - Greater complexity & increased parameters correlation of the model

Measured mass and width

		BW_1	BW_2	BW_3
No interference	[MaV]	*		$\frac{5 \text{ W}_3}{7287_{-18}^{+20} \pm 5}$
No-interference	m [MeV]	$6552 \pm 10 \pm 12$	$6927 \pm 9 \pm 4$	10
	$\Gamma \ [{ m MeV}]$	$124^{+32}_{-26} \pm 33$	$122^{+24}_{-21} \pm 18$	$95^{+59}_{-40} \pm 19$
	N	470^{+120}_{-110}	492_{-73}^{+78}	156^{+64}_{-51}
Interference	$m [\mathrm{MeV}]$	6638^{+43+16}_{-38-31}	6847^{+44+48}_{-28-20}	7134_{-25-15}^{+48+41}
	$\Gamma \ [{ m MeV}]$	$440^{+230+110}_{-200-240}$	191^{+66+25}_{-49-17}	97^{+40+29}_{-29-26}

Non-interference fit

Interference fit


Systematic uncertainty table (sources with minor effects suppressed)

$\overline{ m Fit}$	Dominant sources	$M_{ m BW_1}$	$M_{ m BW_2}$	$M_{ m BW_3}$	Γ_{BW_1}	Γ_{BW_2}	Γ_{BW_3}
No-interference	Signal shape	3	3	3	10	5	5
	NRSPS shape	3	1	1	18	15	17
Non-interference fit	Feed-down	11	1	1	25	8	6
	Total uncertainty	12	4	5	33	18	19
Interference	Signal shape	7	12	7	56	8	7
	DPS shape	1	3	2	18	6	2
	NRSPS shape	9	14	13	85	9	20
Interference fit	Mass resolution	8	4	1	24	7	13
	Combinatorial bkg.	7	2	<1	5	3	2
	D 1.1	+0	+44	+38	+0	+19	+12
	Feed-down	-27	-0	-0	-210	-0	-0
	Total uncertainty	$^{+16}_{-31}$	$^{+48}_{-20}$	$^{+41}_{-15}$	$^{+110}_{-240}$	$^{+25}_{-17}$	$+29 \\ -26$

- Implication of interf. Result:
 - Same J^{PC}
 - Large separation--200-300 MeV indicates radial excitation
- Any theoretical predication?

Comparison with some theoretical calculations

CN	IS Preliminary		135 fb ⁻¹ (13 TeV)
Candidates / 25 MeV	I.	∳ Data —	Fit
140 E	. J. M	—BW1 ····	BW2[X(6900)]
120 E		™ BW3 —	Background
100 Canc		WIII W/0	o interf.
60			
40 =	$\Lambda \Lambda$	I ¹ T ¹ I	
20		No.	
Unc.			
-1 -2 -3			
-3 <u>E</u>	6.5 7	7.5 8	8.5 9
			$m_{J/\psi J/\psi}$ [GeV]

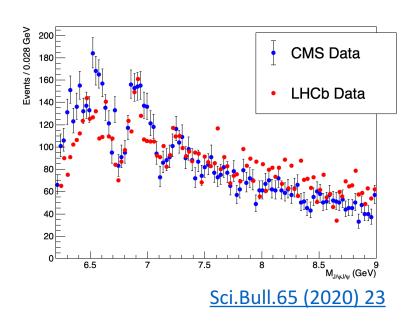
CMS Preliminar	y 135 fb ⁻¹ (13 TeV)
0 180 E 22 160 E 1	Data
Candidates 140 140 140 140 140 140 140 140 140 140	BW3 — Background
O and o conditions and o conditions and o conditions and o conditions are conditions and o conditions are conditions and o conditions are conditional conditions.	W/ interf.
60 40	
20	
Stat. unc.	
0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	7.5 8 8.5 9
	m _{J/ψJ/ψ} [GeV]

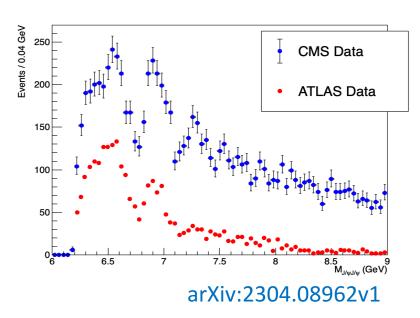
P-wave

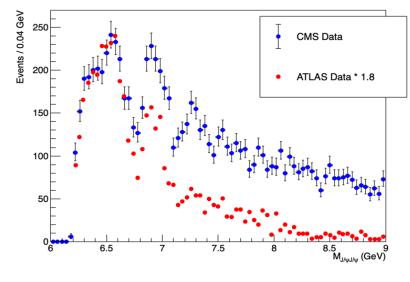
N^{2S+1}	$L_J J^P$	$C \ \langle K.E$	E(0)	$\langle V_C^{(0)} \rangle$	$\langle V_L^{(0)} \rangle$	$\langle V_{SS}^{(1)} \rangle$	$\langle V_{LS}^{(1)} \rangle$	$\langle V_T^{(1)} \rangle$	$V^{(1)}(r)$	M_f
					337.5					
					548.6					
$3^{3}P_{1}$	1-+	475.1	982.6	-215.5	727.7	-4.6	-20.9	15.5	-1.2	7220
arXiv:	2108.0	4017 [hep-pł	n]						

$M[BW1] = 6552^{+10+12}_{-10-12} MeV$
$M[BW2] = 6927^{+9+4}_{-9-4} MeV$
$M[BW3] = 7287^{+20+5}_{-18-5} MeV$

S-	wa	ve


$T_{4Q}(nS)$ states	J^{p}	Mass(n=1)	Mass(n=2)	Mass(n=3)	Mass(n=4)
$T_{ccar{c}ar{c}}$	0++	6055_{-74}^{+69}	6555_{-37}^{+36}	6883_{-27}^{+27}	7154^{+22}_{-22}
	2++	$6090^{+62}_{-66} \\$	6566_{-35}^{+34}	$6890^{+27}_{-26} \\$	$7160^{+21}_{-22} \\$

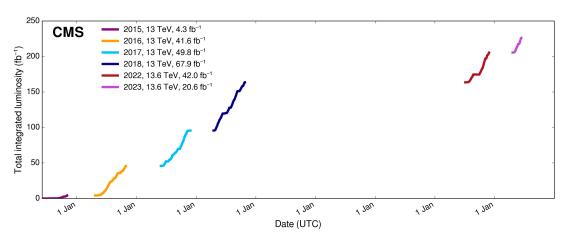

M[BW1] = 6638 ⁺⁴³⁺¹⁶ ₋₃₈₋₃₁ MeV
M[BW2] = 6847 ⁺⁴⁴⁺⁴⁸ ₋₂₈₋₂₀ MeV
M[BW3] = 7134 ⁺⁴⁸⁺⁴¹ ₋₂₅₋₁₅ MeV


Nucl. Phys. B 966 (2021) 115393

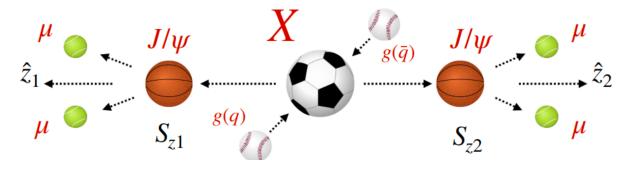
- Radial excited p-wave states (like J/ψ series)?
- Or Radial excited S-wave states?
- Theoretical situation difficulty & confusing
 - Important next step: measure JPC to clarify
- Natural question: what about YY final state?

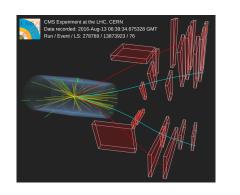
Comparison with LHCb & ATLAS

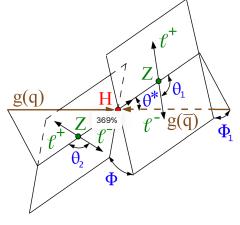
- CMS vs LHCb comparisons:
 - $135/9 \approx 15X$ (int. lum.)
 - $(5/3)^4 \approx 8X$ (muon acceptance)
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events, but much less DPS
 - 2X yield @CMS for X(6900)

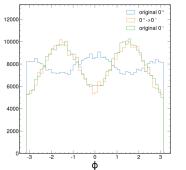

- CMS vs ATLAS comparisons:
 - ATLAS is 1/3 –1/2 of CMS data (trigger?)
 - ATLAS used dR cut—remove high mass events
 - CMS has slightly better resolution

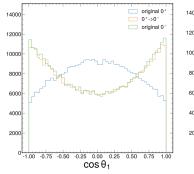
CMS has good sensitivity to all-muon final state in this mass region

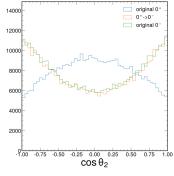

Summary

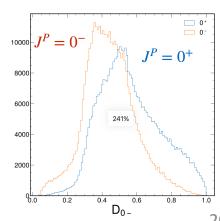

- CMS found 3 significant $J/\psi J/\psi$ structures using 135 fb⁻¹ 13 TeV data <u>arXiv:2306.07164</u>
 - BW2 consistent with X(6900) reported by LHCb
 - CMS found two new structures, provisionally named as X(6600), X(7300)
- A family of structures which are candidates for all-charm tetra-quarks!
 - Large mass separations 200+ MeV suggest radial excitation
 - Possible interference effects suggest the same J^{PC} and coherent production
 - All-heavy quark exotic structures offer a system easier to understand
 - Mass differences from multiple structures can be better calculated
 - A new window for further research in strong interaction


Outlook




- Data in 2016 + 2017 + 2018: $41.6 + 49.8 + 67.9 = 159.3 \text{ fb}^{-1}$
- Updated data in 2022 + 2023: $42.0 + 20.6 = 62.6 \text{ fb}^{-1}$
 - Confirmation of X(6600), X(6900) with updated data?
 - Observation of X(7300)
- Spin parity analysis is going on



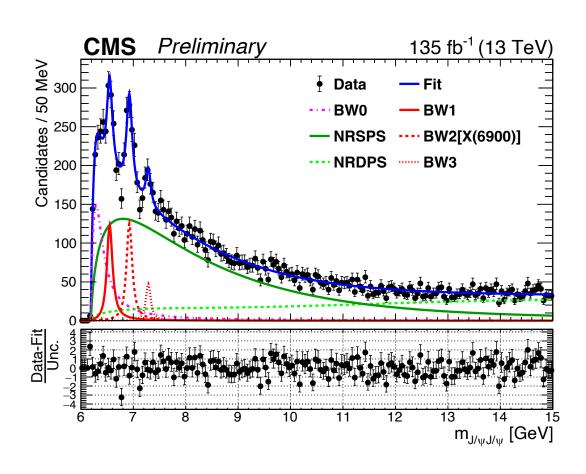


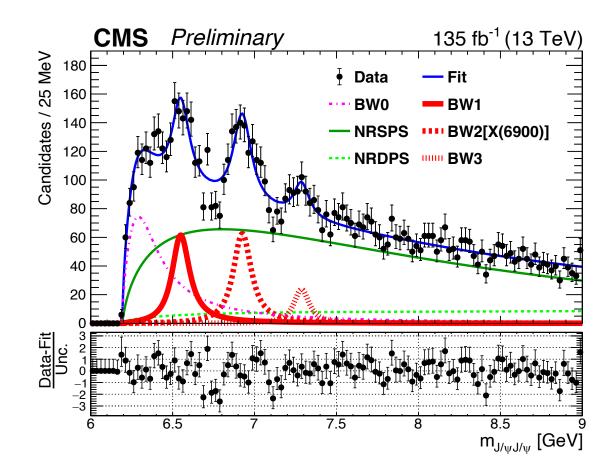
Create an optimal observable (MELA) to separate spin parity

$$\mathcal{R}_{\text{opt,2}} = \frac{\mathcal{P}_1(\vec{x}_{\text{reco}}^{\text{full}})}{\mathcal{P}_0(\vec{x}_{\text{reco}}^{\text{full}}) + c \cdot \mathcal{P}_1(\vec{x}_{\text{reco}}^{\text{full}})}$$

Backup

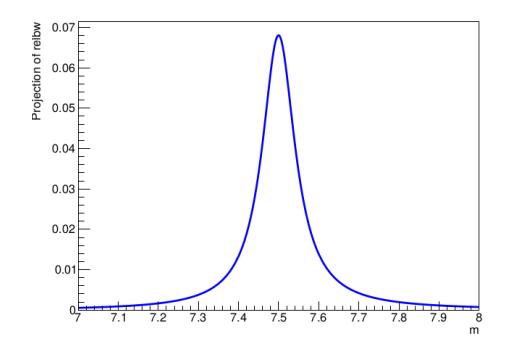
Summary


CMS found 3 significant $J/\psi J/\psi$ structures using 135 fb⁻¹ 13 TeV data


- BW2 consistent with X(6900) reported by LHCb
- CMS found two new structures, provisionally named as X(6600), X(7200)
- A family of structures which are candidates for all-charm tetra-quarks!
 - Large mass separations 200+ MeV suggest radial excitation
 - Possible interference effects suggest same J^{PC} and coherent production
- All-heavy quark exotic structures offer system easier to understand
- Mass differences from multiple structures can be better calculated
- A new window to understand the strong interaction

CMS has good sensitivity to all-muon final states in this mass region

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-003/index.html


Final CMS model: 3 BWs + Backgrounds+ BW0

Signal PDF

$$BW(m;m_0,\Gamma_0) = \frac{\sqrt{m}\Gamma(m)}{m_0^2 - m^2 - im_0\Gamma(m)},$$

$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2L+1} \frac{m_0}{m} \left(B_L'(q,q_0,d)\right)^2,$$
 Phase space
$$B_L'(q,q_0,d) = \frac{q^{-L}B_L(q,d)}{q_0^{-L}B_L(q_0,d)} = \left(\frac{q_0}{q}\right)^L \frac{B_L(q,d)}{B_L(q_0,d)},$$

$$B_0(q,d) = 1,$$

$$B_1(q,d) = \sqrt{\frac{2z}{z+1}},$$

$$B_2(q,d) = \sqrt{\frac{13z^2}{(z-3)^2 + 9z}},$$

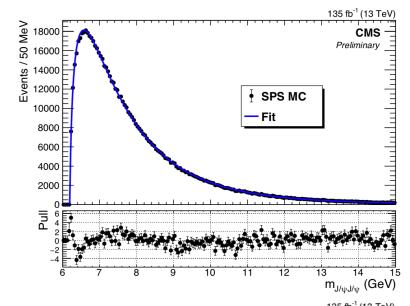
$$B_3(q,d) = \sqrt{\frac{277z^3}{z(z-15)^2 + 9(2z-5)^2}},$$

$$B_4(q,d) = \sqrt{\frac{12746z^4}{(z^2 - 45z + 105)^2 + 25z(2z-21)^2}},$$

$$z = (|q|d)^2, z_0 = (|q_0|d)^2$$

Default : L=0

$$\sum N_{X_j} \cdot |BW(m, M_j, \Gamma_j)|^2 \otimes R(M_j)$$

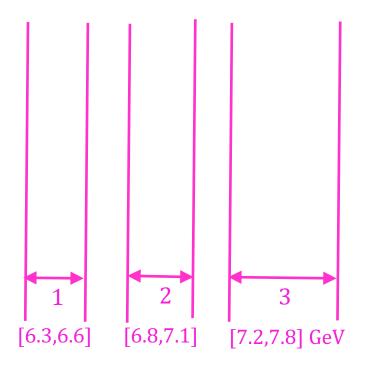

Background PDF


$$\begin{split} f_{SPS}(x,x_0,\alpha,p_1,p_2,p_3) \\ &= (x-x_0)^{\alpha} \cdot \left(1 - \left(\frac{1}{(15-x_0)^2} - \frac{p_1}{10}\right) \cdot (15-x)^2\right) \cdot \exp(-\frac{(x-x_0)^{p_3}}{2 \cdot p_2^{p_3}}), \\ x_t &= x-x_0, \ x_0 = 2M_{J/\psi}, \end{split}$$

$$f_{DPS}(x) = \sqrt{x_t} \cdot \exp(-a \cdot x_t) \cdot (p_0 + p_1 \cdot x_t + p_2 \cdot x_t^2),$$

 $x_t = x - x_0, \ x_0 = 2M_{J/\psi}.$

3 float parameters:

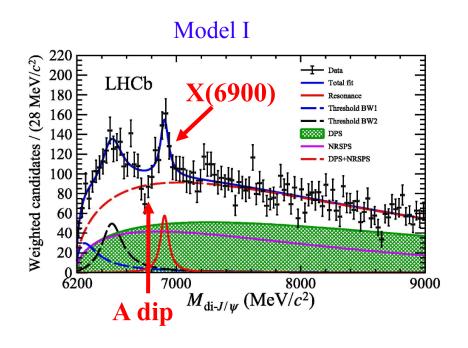

p2 from NRSPS N(NRSPS), N(NRDPS)

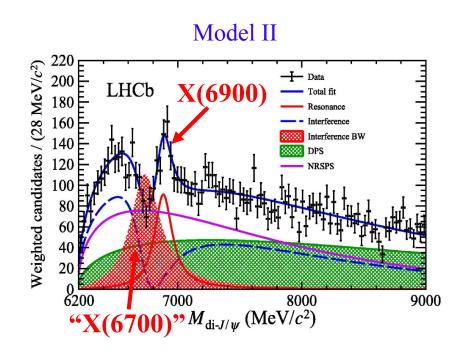
Blinded mass windows for Run II $J/\psi J/\psi$ at CMS

We saw hints of structue at Run I data Proposed three signal regions for Run II data

Blinded mass windows for Run II $J/\psi J/\psi$:

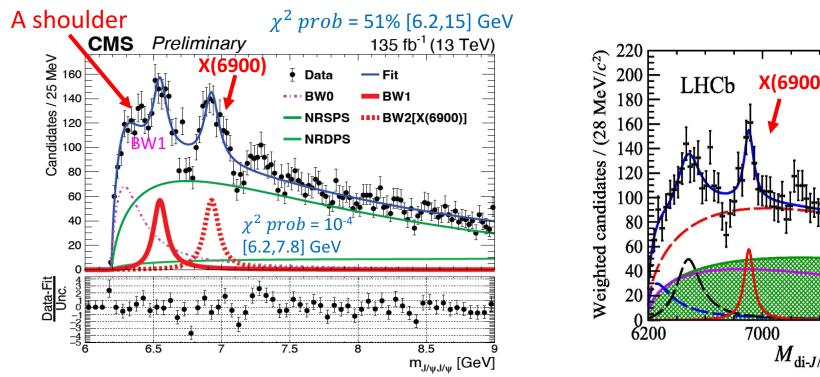
- 1. [6.3,6.6] GeV
- 2. [6.8,7.1] GeV
- 3. [7.2,7.8] GeV (for potential wide structure)


These mass windows will be windows for LEE for potential structures

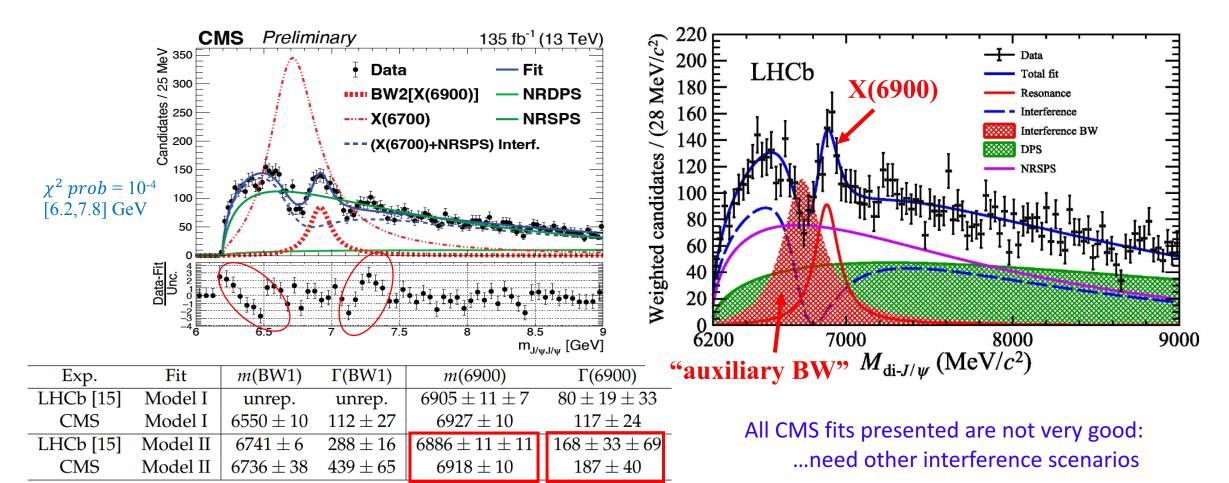

Run I data will be ignored for significance calculation

CMS eventually decide to blind the whole region: [6.2, 7.8] GeV after LHCb released their result

X(6900) reported by LHCb


- In 2020, LHCb reported X(6900) state in $J/\psi J/\psi$ final state, <u>Sci.Bull.65 (2020) 23</u>
- Tried two different models
 - Model I: background+2 auxiliary BWs+ $X(6900) \rightarrow$ poor description of 'dip' around 6.7 GeV
 - Model II: a "virtual" X(6700) to interfere with NRSPS background to account for dip
- What happens if fit CMS data using LHCb models?

Fit with LHCb model I--background+2 auxiliary BWs+ X(6900)


Meighted candidates / (28 MeV/c ²) Neighted candidates / (28 MeV/c ²) THC THC Solution 100 THC THC THC THC THC THC THC T	X(6900)	Total fit Resonance Threshold BW1 Threshold BW2 DPS NRSPS DPS+NRSPS DPS+NRSPS	
6200	$M_{ ext{di-}J/\psi}$ (N	8000 (leV/c^2)	9000

Exp.	Fit	m(BW1)	Γ(BW1)	m(6900)	Γ(6900)
LHCb [15]	Model I	unrep.	unrep.	$6905 \pm 11 \pm 7$	$80 \pm 19 \pm 33$
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24

X(6900) parameters are in good agreement with LHCb LHCb did not give parameters for another 2 BWs

- CMS Data shows a shoulder before BW1
- CMS shoulder makes BW1 distinct
- Does not describe well dips

Fit with LHCb model II—DPS+X(6900)+"X(6700)" interferes with NRSPS

- X(6900) parameters are consistent
- CMS obtained larger amplitude and natural width for X(6700)
 - Fast CMS threshold turn-on drives NRSPS high, which drives large aux. BW
- CMS's X(6600) is 'eaten' –does not describe X6600 and below
- Does not describe X(7300) region