# Single Transverse Spin Asymmetry as a New Probe of SMEFT Dipole Operators 

Bin Yan<br>Institute of High Energy Physics

HFCPV 2023 @ Shanghai
Dec. 15-18, 2023
In cooperation with Xin-Kai Wen, Zhite Yu, C.-P. Yuan, PRL 131 (2023) 241801

## Standard Model Total Production Cross Section Measurements



## Why we need the New Physics

Some open questions:

1. What is Dark Matter ?
2. What is the origin of the neutrino mass?
3. What is the nature of the electroweak symmetry breaking?
4. What is the nature of the Higgs boson (Composite or elementary particle)?
5. What is the origin of the matter-antimatter asymmetry in our universe?
6. ......

New Physics Models and new measurements to answer these questions

## New Physics Searches @ LHC

## ATLAS Heavy Particle Searches* - 95\% CL Upper Exclusion Limits

ATLAS Preliminary


[^0]
## New Physics and SMEFT

## Linear realized EFT

Higgs is a fundamental particle Weak interacting

W. Buchuller, D. wyler 1986
B. Grzadkowski et al, 2010
L. Lehman, A. Marin, 2015
B. Henning et al, 2015

H-L. Li et al, 2020
$\mathcal{L}=\frac{C_{6}}{\Lambda^{2}} \mathcal{O}_{6}+\frac{C_{8}}{\Lambda^{4}} \mathcal{O}_{8}+\ldots$

SMEFT Analysis:
W. Buchuller, D. wyler 1986
B. Grzadkowski et al, 2010

Citations per year


## Data for Dipole Operator

Single-Parameter-Analysis: EW dipole couplings constrained very poorly

R. Boughezal et al. Phys.Rev.D 104 (2021) 9, 095022

R. Boughezal et al, 2303.08257

The interfering effect between the SM and Dipole operators can be ignored

$\rightleftarrows$ Leading contribution: $\left|\frac{c_{\text {dipole }}}{\Lambda^{2}}\right|^{2}$
$=0$ for the cross section

## New Physics and Dipole Operator



Loop-induced by the BSM


May have same physics source $B_{\mu \nu}, W_{\mu \nu}$


How to probe the electroweak dipole operators?

## How to Probe Dipole Operator

Traditional method via cross section and width
$>$ The leading effect is from $\left|C_{\text {dipole }}\right|^{2} / \Lambda^{4}$
> Bothered by other operators and assumptions
 (Interference with SM)
Is it possible to probe the dipole operators at $o\left(\frac{1}{\Lambda^{2}}\right)$ ?
Transverse polarization effect of beams:
The interference between the different helicity states
$\boldsymbol{s}=\left(b_{1}, b_{2}, \lambda\right)=\left(\underline{b_{\mathrm{T}} \cos \phi_{0}, b_{\mathrm{T}} \sin \phi_{0}}, \lambda\right)$
$\rho=\frac{1}{2}(1+\boldsymbol{\sigma} \cdot \boldsymbol{s})=\frac{1}{2}\left(\begin{array}{cc}1+\lambda & b_{\mathrm{T}} e^{-i \phi_{0}} \\ b_{\mathrm{T}} e^{i \phi_{0}} & 1-\lambda\end{array}\right)$
$\checkmark$ Without depending on other NP operators

$|\lambda=+\rangle\langle\lambda=-1$

## Transverse Spin Polarization

Transverse spin polarization of beams
Breaking the rotational invariance \& A nontrivial azimuthal behavior

Spin dependent amplitude square:

$$
|\mathcal{M}|^{2}=\rho_{\alpha_{1} \alpha_{1}^{\prime}}(\boldsymbol{s}) \rho_{\alpha_{2} \alpha_{2}^{\prime}}(\overline{\boldsymbol{s}}) \mathcal{M}_{\alpha_{1} \alpha_{2}}(\phi) \mathcal{M}_{\alpha_{1}^{\prime} \alpha_{2}^{\prime}}^{*}(\phi)
$$

Ken-ichi Hikasa, Phys.Rev.D 33 (1986) 3203, PhysRevD. 38 (1988) 1439

$e^{i \phi * 0}$


$$
M \infty e^{i(\alpha 1-\alpha 2) \phi}
$$

|  | $U$ | $L$ | $T$ |
| :---: | :---: | :---: | :---: |
| $U$ | $\|\mathcal{M}\|_{U U}^{2} \rightarrow 1$ | $\|\mathcal{M}\|_{U L}^{2} \rightarrow 1$ | $\|\mathcal{M}\|_{U T}^{2} \rightarrow \cos \phi, \sin \phi$ |
| $L$ | $\|\mathcal{M}\|_{L U}^{2} \rightarrow 1$ | $\|\mathcal{M}\|_{L L}^{2} \rightarrow 1$ | $\|\mathcal{M}\|_{L T}^{2} \rightarrow \cos \phi, \sin \phi$ |
| $T$ | $\|\mathcal{M}\|_{T U}^{2} \rightarrow \cos \phi, \sin \phi$ | $\|\mathcal{M}\|_{T L}^{2} \rightarrow \cos \phi, \sin \phi$ | $\|\mathcal{M}\|_{T T}^{2} \rightarrow 1, \cos 2 \phi, \sin 2 \phi$ |

G. Moortgat-Pick et al. Phys.Rept. 460 (2008), JHEP 01 (2006)

## Single Transverse Spin Asymmetries



Linearly dependent on the dipole couplings $C_{\text {dipole }}$ and spin $b_{T}$

$$
\begin{aligned}
& A_{L R}^{i}=\frac{\sigma^{i}(\cos \phi>0)-\sigma^{i}(\cos \phi<0)}{\sigma^{i}(\cos \phi>0)+\sigma^{i}(\cos \phi<0)}=\frac{2}{\pi} A_{R}^{i} \\
& A_{U D}^{i}=\frac{\sigma^{i}(\sin \phi>0)-\sigma^{i}(\sin \phi<0)}{\sigma^{i}(\sin \phi>0)+\sigma^{i}(\sin \phi<0)}=\frac{2}{\pi} A_{I}^{i}
\end{aligned}
$$



## Pinning down Dipole Operators

$\mathcal{L}_{\text {eff }}=-\frac{1}{\sqrt{2}} \bar{\ell}_{L} \sigma^{\mu \nu}\left(g_{1} \Gamma_{B}^{e} B_{\mu \nu}+g_{2} \Gamma_{W}^{e} \sigma^{a} W_{\mu \nu}^{a}\right) \frac{H}{v^{2}} e_{R}+$ h.c.
$\Gamma_{\gamma}^{e}=\Gamma_{W}^{e}-\Gamma_{B}^{e}$
$\Gamma_{Z}^{e}=c_{W}^{2} \Gamma_{W}^{e}+s_{W}^{2} \Gamma_{B}^{e}$

Aligned Spin

$$
\phi_{0}=\bar{\phi}_{0}=0
$$

Opposite Spin

$$
\left(\phi_{0}, \bar{\phi}_{0}\right)=(0, \pi)
$$



Why the limit from the Aligned Spin would be stronger than the Opposite Spin?

## Pinning down Dipole Operators

$$
\mathcal{L}_{\text {eff }}=-\frac{1}{\sqrt{2}} \bar{\ell}_{L} \sigma^{\mu \nu}\left(g_{1} \Gamma_{B}^{e} B_{\mu \nu}+g_{2} \Gamma_{W}^{e} \sigma^{a} W_{\mu \nu}^{a}\right) \frac{H}{v^{2}} e_{R}+\text { h.c. }
$$

Aligned Spin

$$
\phi_{0}=\bar{\phi}_{0}=0
$$

Opposite Spin

$$
\left(\phi_{0}, \bar{\phi}_{0}\right)=(0, \pi)
$$




CP property $\quad e^{+} e^{-}:\left|e^{-}(\boldsymbol{s}) e^{+}(\bar{s})\right\rangle \xrightarrow{\mathcal{C P}}\left|e^{-}(\bar{s}) e^{+}(\boldsymbol{s})\right\rangle$

$$
A_{L R}^{\mu \mu} \propto \mathbf{s}_{T}+\overline{\mathbf{s}}_{T}
$$

$$
\mu^{+} \mu^{-}:|\phi, \theta\rangle \xrightarrow{\mathcal{C P}}|\phi, \theta\rangle
$$

## Pinning down Dipole Operators

$\mathcal{L}_{\text {eff }}=-\frac{1}{\sqrt{2}} \bar{l}_{L} \sigma^{\mu \nu}\left(g_{1} \Gamma_{B}^{e} B_{\mu \nu}+g_{2} \Gamma_{W}^{e} \sigma^{a} W_{\mu \nu}^{a}\right) \frac{H}{v^{2}} e_{R}+$ h.c.
The sensitivity to $\Gamma_{Z}^{e}$ is much stronger than $\Gamma_{\gamma}^{e}$


Parity property
$\mathcal{M}_{++}^{*} \mathcal{M}_{-+}=-\mathcal{M}_{+-}^{*} \mathcal{M}_{--}\left(g_{L}^{e} \leftrightarrow g_{R}^{e}\right)$
$|\mathcal{M}|^{2} \sim\left(g_{L}^{e}-g_{R}^{e}\right)\left[\left(g_{L}^{e}+g_{R}^{e}\right) \Gamma_{\gamma}^{\mathrm{e}}+\Gamma_{Z}^{\mathrm{e}}\right]$

- $\mathrm{SM}\left(g_{L}^{e}+g_{R}^{e}\right)=-1 / 2+2 s_{W}^{2} \ll 1$
- $\mathrm{SM} W W \gamma<W W Z$
- $\Gamma_{W}^{e}=\Gamma_{Z}^{e}+s_{W}^{2} \Gamma_{\gamma}^{e}$


## Pinning down Dipole Operators

For the imaginary parts of dipole couplings, things are similar

Offering a new opportunity for directly probing potential CPviolating effects.

Aligned Spin

$$
\phi_{0}=\bar{\phi}_{0}=0
$$

Opposite Spin

$$
\left(\phi_{0}, \hat{\phi}_{0}\right)=(0, \pi)
$$




## Summary

$\checkmark$ The muon g-2 data may hint the NP effects from the dipole operators, but their weak interactions are difficult to be probed since the leading effects are from $1 / \Lambda^{4}$
$\checkmark$ Dipole operators can be probed at $1 / \Lambda^{2}$ via transverse spin effects of beams
$\checkmark$ Both Re \& Im parts can be well constrained, without impact from other NP and offering a new opportunity for directly probing potential CP-violating effects.
$\checkmark$ Our bounds are much stronger than other approaches by 1~2 orders of magnitude
$\checkmark$ Polarized Muon collider, hadron colliders, electron-Ion collider

|  | $\left\|\Gamma_{Z}^{e}\right\|$ | $\left\|\Gamma_{\gamma}^{e}\right\|$ |
| :--- | :--- | :--- |
| Our Study | $\mathbf{0 . 0 0 0 2}$ | $\mathbf{0 . 0 0 5}$ |
| LHC Drell-Yan | 0.0765 | 0.197 |
| Z Partial Width | 0.0582 | 0.093 |
| $(g-2)_{e}$ | $10^{-2}$ | $10^{-6}$ |

Thank you


[^0]:    *Only a selection of the available mass limits on new states or phenomena is shown.
    $\dagger$ Small-radius (large-radius) jets are denoted by the letter $j(J)$.

