无中微子双贝塔衰变实验

祖音い シェシー

技术挑战

韩柯

上海交通大学

群雄逐鹿

Kamioka

无双实验:物理意义

韩柯 上海交通大学

- * Beta spectra, continuous or monoenergetic? \rightarrow Neutrinos
- * 1930, Pauli: Idea of neutrino
- * 1933, Fermi: Beta decay theory

$$n \rightarrow p + e^- + \bar{\nu}_e$$

Beta decay

- * Beta spectra, continuous or monoenergetic? \rightarrow Neutrinos
- * 1930, Pauli: Idea of neutrino
- * 1933, Fermi: Beta decay theory

$$n \to p + e^{-} + \bar{\nu}_{e}$$

$$^{3}H \to ^{3}He^{+} + e^{-} + \bar{\nu}_{e}$$

Beta decay

Helium-3 (1, 2)

Tritium (2, 1)

40 Τi	41 Ti	42 Ti	43 Ti	44 Ti	45 Ti	46 Ti	47 T	48 Ti	49 Ti	50 Ti	ę
_{β+}	_{β+}	β+	β+	e- capture	β+	Stable	Stable	Stable	Stable	Stable	
³⁹ Sc	⁴⁰ Sc	⁴¹ Sc	⁴² Sc	⁴³ Sc	⁴⁴ Sc	45SC	⁴⁶ Sc	47 Sc	⁴⁸ Sc	⁴⁹ Sc	5
_P	_{β+}	_{β+}	_{β+}	_{β+}	_{β+}	Stable	β-	β-	β-	β-	
³⁸ Ca	³⁹ Ca	⁴⁰ Ca	41 Ca	42Ca	⁴³ Ca	44Ca	⁴⁵ Ca	⁴⁶ Ca	47 Ca	⁴⁸ Ca	4
_{β+}	_{β+}	2β+	e- capture	Stable	_{Stable}	Stable	β-	2β-	β-	2β-	
³⁷ Κ	³⁸ Κ	39K	⁴⁰ Κ	41K	⁴² Κ	⁴³ Κ	⁴⁴ Κ	⁴⁵ Κ	⁴⁶ Κ	⁴⁷ Κ	
_{β+}	^{β+}	Stable	β-	Stable	β-	β-	β-	β-	β-	β-	
³⁶ Ar	37 Ar	³⁸ Ar	³⁹ Ar	⁴⁰ Ar	41 Ar	42 Ar	⁴³ Ar	⁴⁴ Ar	⁴⁵ Ar	⁴⁶ Ar	4
^{2β+}	e- capture	_{Stable}	_{β-}	_{Stable}	β-	β-	β-	β-	β-	β-	
35 C Stable	36 CI β-	37C Stable	³⁸ CΙ β-	³⁹ Cl β-	40 CI β-	41 CI β-	42 CI β-	43 CI β-	44 Prim	ary Decay	Mo
34 S Stable	³⁵ S β-	36 S Stable	³⁷ S β-	38 S β-	³⁹ S β-	40 S β-	41 S β-	42 S β-	His 43 α β- β-	sion 2n β+ 2β+ - e+	

${}^{48}Ca \rightarrow {}^{48}Ti^{++} + 2e^- + 2\bar{\nu}_e$

Double beta decay

$2n \rightarrow 2p + 2e^- + 2\bar{\nu}_e$

¹²³ Ba	¹²⁴ Ba	¹²⁵ Ba	¹²⁶ Ba	¹²⁷ Ba	¹²⁸ Ba	¹²⁹ Ba	¹³⁰ Ba	¹³¹ Ba	¹³² Ba	¹³³ Ba
_{β+}	_{β+}	_{β+}	_{β+}	_{β+}	e- capture	_{β+}	^{2β+}	_{β+}	^{2β+}	e- capture
¹²² Cs	¹²³ Cs	¹²⁴ Cs	¹²⁵ CS	¹²⁶ CS	¹²⁷ CS	¹²⁸ CS	¹²⁹ Cs	¹³⁰ CS	131 CS	¹³² CS
_{β+}	_{β+}	_{β+}	_{β+}	_{β+}	_{β+}	_{β+}	_{β+}	_{β+}	e- capture	_{β+}
¹²¹ Χe	122Xe	¹²³ Χe	¹²⁴ Xe	¹²⁵ Χe	¹²⁶ Χe	127 Xe	128Xe	129Xe	130Xe	131Xe
_{β+}	e- capture	_{β+}	^{2β+}	_{β+}	^{2β+}	e- capture	_{Stable}	_{Stable}	_{Stable}	_{Stable}
120	121 	122 	123	124	125	126	127	128	129	130
β+	β+	β+	β+	β+	e- capture	β+	Stable	β-	β-	β-
¹¹⁹ Te	120 Te	121 Te	122 Te	123 Te	124 Te	125 Te	126 Te	127 Te	128 Te	129 Te
_{β+}	2β+	_{β+}	_{Stable}	e- capture	Stable	_{Stable}	Stable	β-	2β-	β-
¹¹⁸ Sb _{β+}	119 Sb e- capture	120 Sb β+	121Sb _{Stable}	122 Sb β-	123Sb Stable	124 Sb β-	125 Sb β-	126 Sb β-	127 β Prin	128 nary Decay table n
117 Sn Stable	¹¹⁸ Sn _{Stable}	119 Sn Stable	120 Sn Stable	¹²¹ Sn β-	122 Sn 2β-	123 Sn β-	124 Sn 2β-	125 Sn β-	F 126 β β 2	ssion 2n β+ β- e+

Double β^+ , double EC, and β^+ EC

Extremely rare events

Nucleus	$Q_{2\beta}$ -value (MeV)	$T_{1/2}^{2\nu, eval.}(y)$
48 Ca	4.26808	(4.39 ± 0.58) x
⁷⁶ Ge	2.03906	(1.43 ± 0.53) x
⁸² Se	2.9979	(9.19 ± 0.76) x
⁹⁶ Zr	3.35603	(2.16 ± 0.26) x
¹⁰⁰ Mo	3.03436	(6.98 ± 0.44) x
¹¹⁶ Cd	2.81349	(2.89 ± 0.25) x
¹²⁸ Te	0.8667	(3.49 ± 1.99) x
¹³⁰ Te	2.52751	(7.14 ± 1.04) x
¹³⁶ Xe	2.45791	(2.34 ± 0.13) x
¹⁵⁰ Nd	3.37138	$(8.37 \pm 0.45)x$
238 _U	1.1446	$(2.00\pm0.60)x$

- * 1930, Pauli: Idea of neutrino
- * 1933, Fermi: Beta decay theory
- * 1935, Goeppert-Mayer: Two-Neutrino double beta decay
- * 1937, Majorana: Majorana Neutrino
- * 1939, Furry: Neutrinoless double beta decay 0vββ

0vB3 is forbidden in the SM

SM two-component theory of neutrino

 Neutrinos are left-handed and antineutrinos are right-handed (helicity)

 $0\nu\beta\beta$ is forbidden in the SM

- Neutrino-antineutrino distinction
- Helicity mis-match

Tiny but finite neutrino mass

Black-box Theorem: $0\nu\beta\beta \rightarrow Majorana$ neutrinos

* "Minima" mechanism for $0\nu\beta\beta$: exchange of a light Majorana neutrino * However, many models exist ν_i * 0vββ Black Bgx may include any models, but it always leads to an U effective $\bar{\nu}_{\rho} \leftrightarrow \nu_{\rho}$

 $0\nu\beta\beta \leftrightarrow$ Majorana neutrinos

2

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) [M^{0\nu}]^2 \frac{|\langle m_{\beta\beta} \rangle}{m_e^2}$$

Phase space factor Nuclear matrix element

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U_{PMNS} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Effective Majorana Mass: $|\langle m_{\beta\beta} \rangle| = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$

 $= \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) [M^{0\nu}]^2 \frac{|\langle m_{\beta\beta} \rangle}{m_e^2}$$

Phase space factor Nuclear matrix element

$$U_{PMNS} = \begin{pmatrix} c_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{12}c_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} & -c_{12}s_{23} \end{pmatrix}$$

Effective Majorana Mass: $|\langle m_{\beta\beta} \rangle| = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$

2

 $\begin{array}{ccc} s_{12}c_{13} & s_{13}e^{-i\delta_{\rm CP}} \\ s_{3} - s_{12}s_{13}s_{23}e^{i\delta_{\rm CP}} & c_{13}s_{23} \\ s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{\rm CP}} & c_{13}c_{23} \end{array} \right) \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{2}} & 0 \\ 0 & 0 & e^{i\alpha_{3}} \end{pmatrix}$

Effective Majorana Mass

$$|\langle m_{\beta\beta} \rangle| = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$$

Inverted mass ordering:

$$m_{3} \approx 0, m_{1} \approx m_{2} \approx \sqrt{\Delta m_{a}^{2}}$$

$$m_{\beta\beta} = |U_{e1}^{2} + U_{e2}^{2}| \sqrt{\Delta m_{a}^{2}}$$

$$= |c_{12}^{2} + s_{12}^{2} e^{i2\alpha_{2}}| \sqrt{\Delta m_{a}^{2}}, (s_{13} \approx 0, c_{13} \approx 1)$$

 $\sqrt{\Delta m_a^2} \approx 50 \text{ meV}$

Importance of nuclear physics

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) [M^{0\nu}]^2 \frac{|\langle m_{\beta\beta} \rangle}{m_e^2}$$

Phase space factor Nuclear matrix element

*
$$G^{0\nu} \propto Q^5$$

- * $M^{0\nu} \in [1,10]$ depending on isotopes, models
- * See more from Prof. Yao's talk

$|^{2} \qquad {}^{136}Xe \to {}^{136}Ba^{++} + 2e^{-} + Q(2458 \, keV)$ ent $4500 \qquad 4500 \qquad 4500 \qquad 48Ca \qquad 4000 \qquad 4500 \qquad 48Ca \qquad 4000 \qquad 40000 \qquad 4000 \qquad 4$

No magic isotopes

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) [M^{0\nu}]^2 \frac{|\langle m_{\beta\beta} \rangle}{m_e^2}$$

Phase space factor Nuclear matrix element

*
$$G^{0\nu} \propto Q^5$$

- * $M^{0\nu} \in [1,10]$ depending on isotopes, models
- See more from Prof. Yao's talk *

The importance of 0v 33

- * Majorana or Dirac nature of neutrinos
- Lepton number violating process: beyond neutrino physics **

* Measures effective Majorana mass: relate 0vββ to the neutrino oscillation

SNOLab

无双实验: 技术挑战

韩柯 上海交通大学

Experimental Searches

- * Detect the electrons
 - * Energy
 - * Trajectories
- * Detect the daughter nuclei
 - * Geochemical and radiochemical
 - * Imaging

Geochemical and radiochemical

Mass	Bi2Te No. 4	Normal	Diff.	Difference normalize
124	< 0.004	0.0005	< 0.0035	<0.29 -
126	< 0.005	0.0005	< 0.0045	<0.38 -
128	< 0.014	0.011	< 0.003	<0.25 -
129	=1.000	0.1525	0.8475	71.66 ± 0.1
130	0.0652	0.0236	0.0416	$3.52 \pm 0.$
121	0.1000		0.0052	

TABLE I. Isotopic composition of xenon extracted from 371 g of a 1.5×10^9 year old mineral containing 70 percent Bi₂Te₃. The total xenon content was 2.6 ×10⁻⁷ cc S.T.P. e d The excess Ae¹⁰⁰ is attributed to double beta-decay of Te¹⁰ There appears to be no other explanation for its formation. Assuming an age of 1.5×10^9 years for the Bi₂Te₃, the excess Xe¹³⁰ present corresponds to double beta-decay of Te¹³⁰ with a half-life of 1.4×10^{21} years. This result is to be compared with theoretical half-lives of 6×10^{14} years and 10^{24} years, the former computed from the Majorana theory of the neutrino, and the latter from the Dirac theory. Both calculations are for allowed transitions with 1.6 Mev of available energy.

¹ M. G. Inghram and J. H. Reynolds, Phys. Rev. 76, 1265 (1949). ² Seren, Friedlander, and Turkel, Phys. Rev. 72, 888 (1947).

Phys. Rev. 78, 822 (1950)

Haxton, Cowan, and Goldhaber [15] revived interest in the ²³⁸U system and the present work was started as a result of their publication. The experiment involves the extraction of the accumulated plutonium from uranium salt that had been purified and isolated from fallout for 33 yr. This amount of uranyl nitrate $(1.02 \times 10^{25} \text{ atoms of})$ ²³⁸U) produces 2.3×10^5 atoms of ²³⁸Pu in 33 yr if the half-life for double beta decay is 10²¹ yr. The chemically

Phys. Rev. Lett. 67, 3211 (1991)

Experimental Searches

- * Detect the electrons
 - * Energy
 - * Trajectories
- * Detect the daughter nuclei
 - * Geochemical and radiochemical
 - * Imaging

Half-life sensitivity from experiments

- Number of signals over fluctuation of background for possible observation
- * Extreme requirements for detector performance and background control

Impressive experimental progress

- * Still no discovery but half-life limits improved significantly
- * MeV electron measurement is relatively straightforward
- * From above-ground table-top experiments with grams of isotopes
- * To underground ton-scale detectors, done by hundreds of collaborators

limit (year) half-life ονββ

Partial list of selected isotopes; Pre-1984 data points from review article by Haxton and Stephenson

- * 1948: Coincidence counting with Geiger counter for ${}^{124}Sn \rightarrow {}^{124}Te$
- * 百花齐放: cloud chamber, etc

- * 1948: Coincidence counting with Geiger counter for ${}^{124}Sn \rightarrow {}^{124}Te$
- * 百花齐放: cloud chamber, etc
- * 各显神通: Cowan and Reines, C.S. Wu, etc

Test of Neutrino—Antineutrino Identity

Clyde L. Cowan, Jr. and Frederick Reines Phys. Rev. **106**, 825 – Published 15 May 1957

Double beta decay in ⁴⁸Ca and the conservation of leptons ☆

R.K. Bardin, D.J. Gollon, J.D. Ullman, C.S. Wu

Phys. Lett. B 26 (1967) 112

RESEARCH ARTICLE | MARCH 20 1983

Double beta decay-an experimental review

Chien-Shiung Wu

AIP Conference Proceedings 96, 374–395 (1983)

https://doi.org/10.1063/1.33918

- * 1948: Coincidence counting with Geiger counter for ${}^{124}Sn \rightarrow {}^{124}Te$
- * 百花齐放: cloud chamber, etc
- * 各显神通: Cowan and Reines, C.S. Wu, etc
- * 1967: Fiorini et al., Ge detector

1933-2023

Fig. 1. Experimental setup.

- * 1948: Coincidence counting with Geiger counter for ${}^{124}Sn \rightarrow {}^{124}Te$
- * 百花齐放: cloud chamber, etc
- * 各显神通: Cowan and Reines, C.S. Wu, etc
- * 1967: Fiorini et al., Ge detector
- * 1980~: H.H. Chen et al., Xe TPC

- H.H. Chen and P.J. Doe, An improved method to test the lepton number conservation, The liquid Xenon time projection chamber, UCI-Neutrino-40, Int. Rep. June 1980.
- S.-D. Boris et al., ITEF-47, Moscow 1982 and private communication by V.A. Lubimov.
- E. Bellotti et al., Xenon time projection chamber for double-beta decay, CERN-EP/83-144, Presented at the Time Projection Chamber Workshop, Vancouver B.C. (Canada) 1983.
- A proposal for the construction of a TPC for the search for double-beta decay has been presented to the funding authorities by the Caltech group (private communication by F. Boehm).

- * 1948: Coincidence counting with Geiger counter for ${}^{124}Sn \rightarrow {}^{124}Te$
- * 百花齐放: cloud chamber, etc
- * 各显神通: Cowan and Reines, C.S. Wu, etc
- * 1967: Fiorini et al., Ge detector
- * 1980~: H.H. Chen et al., Xe TPC

- H.H. Chen and P.J. Doe, An improved method to test the lepton number conservation, The liquid Xenon time projection chamber, UCI-Neutrino-40, Int. Rep. June 1980.
- S.-D. Boris et al., ITEF-47, V.A. Lubimov.
- E. Bellotti et al., Xenon ti decay, CERN-EP/83-144, Pr Workshop, Vancouver B.C. (
- A proposal for the constructi decay has been presented t group (private communicati

- * 1948: Coincidence counting with Geiger counter for ${}^{124}Sn \rightarrow {}^{124}Te$
- * 百花齐放: cloud chamber, etc
- * 各显神通: Cowan and Reines, C.S. Wu, etc
- * 1967: Fiorini et al., Ge detector
- * 1980~: H.H. Chen et al., Xe TPC
- * 1984: Fiorini and Niinikoski, Low temperature detector

Discovery of 2v BB

 Elliott, Hahn, Moe, Direct evidence for two-neutrino double-beta decay in ⁸²Se.
 Phys. Rev. Lett. 59, 2020 (1987)

UC Irvine (Reines)

"The two-neutrino mode of double-beta decay ⁸²Se in has been observed in a time-projection chamber at a half-life of (1.1^{+0.8}_{-0.3}) × 10²⁰ yr (68% confidence level).
... It is the rarest natural decay process ever observed directly in the laboratory."

First experiment in China

A search for neutrinoless double β decay of ${}^{48}Ca \approx$

Ke You^a, Yucan Zhu^a, Junguang Lu^a, Hanseng Sun^a, Weihua Tian^a, Wenheng Zhao^a, Zhipeng Zheng^{a,b}, Minghan Ye^{a,b}, Chengrui Ching^{b,c}, Tsohsiu Ho^{b,c}, Fengzhu Cui^d, Changjiang Yu^d and Guojing Jiang^d

- a Institute of High Energy Physics, Academia Sinica, P.O. Box 918, Beijing 100039, China
- ^b China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, B
- ^c Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100080, China
- ^d Institute of Optics and Fine Mechanics, Academia Sinica, Changchun, China

Received 10 December 1990; revised manuscript received 5 June 1991

A search for the neutrinoless double β decay of ⁴⁸Ca is carried out in a coal mine near Beijing. Large scintillation crystals of natural CaF₂ were used as both detector and β source. Results obtained after a total of 7588.5 h of data taking give 9.5×10^{21} yr (76% confidence level) as the lower limit of the half-life of neutrinoless double β decay of ⁴⁸Ca.

30x 918, Beijing 100039, China 1 Laboratory), P.O. Box 8730, B 0x 2735, Beijing 100080, China Changchun, China

A false discovery claim in early 2000

- Subset of Heidelberg-Moscow collaboration claims a signal from HM data
- Strong motivation for verification in early 2000
- * Falsified by Gerda and other experiments subsequently

* Can we learn something?

H.V. Klapdor-Kleingrothaus^{*,1}, I.V. Krivosheina², A. Dietz, O. Chkvorets

Search for neutrinoless double beta decay with enriched ⁷⁶Ge in Gran Sasso 1990–2003

Max-Planck-Institut für Kernphysik, PO 10 39 80, D-69029 Heidelberg, Germany

Received 2 December 2003; received in revised form 24 February 2004; accepted 25 February 2004

- * No isotopes with high Q, high natural isotopic abundance, and large NME
- Choice of isotope depends on detector technology (generally speaking) *

No magic isotopes

Small signals

$$S = \ln(2) \frac{M \cdot N_A \cdot a \cdot \varepsilon}{W} \frac{t}{T_{0\nu}}$$

$$M \quad \text{Mass} \quad \varepsilon \quad \text{Efficiency}$$

$$N_A \quad 6.02 \times 10^{23} \quad W \quad \text{Molar mass}$$

$$a \quad \text{Abundance} \quad t \quad \text{Detection time}$$

- * Current half-life limits >10²⁶ year
 - 100 kg 90% enriched ¹³⁶Xe: fewer than three signals per year
- Sensitivity of ton-scale experiments: 10²⁷ to 10²⁸ year
 - * Fewer than 1 event/year

极致探测器技术挑战

* 极低本底

* 极高性能(效率、分辨率)

Gerda Majorana LEGEND CDEX **NvDEX**

Electron

韩柯: Double beta decay - an experimental review

CUORE

AMoRE CUPID **CUPID-CJPL**

PandaX **EXO-200** nEXO NEXT **SuperNEMO**

KamLAND-Zen SNO+ CANDLES **JUNO-0**νββ Photon

International players for the next 20+ years

LEGEND

Electron

韩柯: Double beta decay - an experimental review

nEXO KamLAND-Zen

Photon

Chinese efforts

CDEX **NvDEX**

Electron

韩柯: Double beta decay - an experimental review

CUPID-CJPL

PandaX **JUNO-0**νββ

Photon

固体探测器阵列

CUPID

LEGEND

CDEX

CUPID-CJPL

韩柯: Double beta decay - an experimental review

KamLAND-ZEN

nEXO

PandaX

NvDEX

JUNO-0νββ

Cosmic rays

- Muons and muon-induced (e.g. neutrons) background
- Cosmogenic radioactivity (⁶⁰Co, ⁶⁸Ge, etc)
- Challenges even for R&D aboveground
- Mitigated by going underground: muon flux is reduced by a factor of 10 per 1500 m.w.e.

<u>CJPL</u> PandaX, CDEX CUPID-CJPL, NVDEx

Kamioka KamLAND-Zen CANDLES

SURF Majorana

Major players zeros

SNOLAB

SNO+

SURF

WIPP

nited States

Mitigate muon-induced background

* Deeper lab or more powerful active veto

Mitigate muon-induced background

- * Muon activated ¹³⁶Xe to ¹³⁷Xe, which is the main background in the ROI for $0\nu\beta\beta$ searches with DARWIN@LNGS
- * Can not be vetoed in a large liquid xenon detector
- * This background is 100 times smaller at CJPL

Intrinsic 2v33 background

* $2\nu\beta\beta$ may be a problem if the half-life is short and energy resolution is VERY bad

Intrinsic 2v33 background

	 2νββ m CUORE BI (at 2527 keV)f resolut 	nay be a p cuore BI e (at 3034 keV)t ioncks, VE	oroblem Antidatione RY bad	if the CUPID BI TGYGoal (at 3034 keV) ckky
rface x's	* $100 M_{\odot}$ h life (10	naș a rela 18 vear fa	tidentification stest 2v/	ort half- 3B) and
mpto γ's	pileup 10-3 is a ma	of two ¹⁰⁰ 10-4 jor conce	Moving the Moving the	β decay 5×10-5 UPID
Jons	10-4	10-4	Muon Veto Panels	<10-6
leup	Negligible	Negligible	LD Timing Resolution	5×10-5

: : : : :

Background from detector material/shielding

- Shielding is mandatory to stop gamma background from underground lab environment
- Detector / shielding material screening
 is a major task for 0vββ experiments
 - * Natural radioactivity: 1-100 Bq/kg
 - * $0\nu\beta\beta$ requirement: < 1 mBq/kg
- * High Q of 0vββ helps since most natural gamma is less than 2.6 MeV

#	Material					Ν	fethod	
	Metals							
1	Cu Electrofo	#	Material					
2	Cu Electrofo	26	Cu, C101 0.5	" - 1 - 4 -	_41_			
3	Cu Electrofo	27	Cu wire, Cal	#	Material			
4	Cu Electrofo	28	Pb, smelted	50	Teflon [®] TE ₁	10		
5	Cu Electrofo	29	Pb, UW	51	Peek [®] , Vict	#	Material	
6	Cu Electrofo	30	Pb, UW	52	Vespel [®] , Du	73	$Picocoax^{\mathbb{R}},$, ^
7	Cu Electrofo	31	Pb, smelted	53	Vespel [®] , Du	74	Picocoax [®] ,	,
8	Cu Electrofo	32	Pb, smelted	54	Vespel [®] , Du	75	Cu wire, ba	ir
9	Cu Electrofo	33	Pb, UW	55	Parylene N c	76	Cu wire, ba	ir
10	Cu Electrofo	34	Pb, UW	56	Parylene, Sp	77	Mini Coax	Cŧ
11	Cu Electrofo	35	Pb, archeolog	57	Parylene C,	78	Mini Coax	Cŧ
12	Cu Electrofo	36	Pb, archeolog	58	Parylene C,	79	Parylene co	a
13	Cu Electrofo	37	Pb (Average	59	Parylene C,	80	$Picocoax^{\mathbb{R}},$,
14	Cu Electrofo	38	Sn, sample o	60	Parylene C,	81	$Picocoax^{\mathbb{R}}$,	, .
15	Cu Electrofo	39	Sn, sample o	61	Parylene C,	82	Picocoax [®] ,	, .
16	Cu Electrofo	40	Sn, sample s	62	Poly, 5% bor	83	Picocoax [®] .	,
17	Cu, C101 cal	41	6-way SS cor	63	Poly, Denset	84	Picocoax [®] .	,
18	Cu, C101 2.5	42	TIG-Ce weld	64	PTFE, 0.5"	85	Axon' HV o	са
19	Cu, C101 2.5	43	TIG-Zr weld	65	Kalrez [®] , Du	86	Axon' HV ((fi
20	Cu, C101 1"	44	Cr , stock use	66	Kalrez [®] , Du	87	Axon' Signa	$\hat{\mathbf{al}}$
21	Cu, C101 1"	45	Au, sputterii	67	FEP shrink		C	
22	Cu, C101 1"	46	Al, sputtered	68	FEP shrink		Connectors	ć
23	Cu, C101 1"	47	Al, sputtered	69	FEP tubing	88	Silver epoxy	y
24	Cu, C101 2.5	48	Ge, sputtered	70	PTFE 0.002-	89	Silver epoxy	y
25	Cu, C101 2.5	49	Ge, sputtered			90	Silver epoxy	y
					Cables and p	91	Silver epoxy	y
			Plastics	71	FEP, Dupon	92	Silver epoxy	y,
				72	FEP, Dupon	93	Silver epoxy	y
					· · · ·	94	Silver epoxy	y,
						95	Silver epoxy	y

-

Majorana Demonstrator

Method TODIAC

Method

TTA A

Method

, ,	а 11 т		
#	Material		Method
96	Silver epoxy,		
97	Silver Epoxy	#	Material
98	SnAg Solder	119	Wipes, KIMTECH PURE [®] W4, Kimberly-Clark Prof. [®]
99	Abietic acid,	120	Charcoal, 102022, finer size grain, Blücher
100	Abietic acid,	121	Charcoal, 101135 Saratoga, 0.47 mm, Blücher
101	Soap solution	122	Charcoal, 101135 Saratoga, 0.47 mm, Blücher
102	Soap solution	123	Charcoal, UHP granules, Carbo-Act Int.
103	Fused silica,	124	Charcoal, sample from MPI, Heidelberg
104	Fused silica,	125	Charcoal, K48, Silcarbon
105	Fused silica,	126	Charcoal, Calgon Carbon
106	Fused silica,	127	Charcoal, source from Canberra
107	Fused silica,	128	Hysol [®] 0151 [™] resin, McMaster-Carr
108	CFW Al-Si b	129	Hysol [®] 0151 [™] hardener, McMaster-Carr
109	Pins without	130	Hysol [®] 1C [™] resin, McMaster-Carr
110	Pins with Be	131	Hysol [®] 1C [™] hardener, McMaster-Carr
111	$\text{Vespel}^{\textcircled{\text{R}}}, \text{ in-}$	132	Torr Seal [®] Base, McMaster-Carr A
112	$\text{Vespel}^{\textcircled{\text{R}}}, \text{ in-}$	133	Torr Seal [®] Hardener B, McMaster-Carr
113	$\text{Vespel}^{\textcircled{\text{R}}}, \text{ in-}$	134	Silicone Rubber, P-4, Silicones Inc.
114	Sapphire C-I	135	2-propanol, A461-500, Fischer Scientific
115	JFET dies, \mathbb{N}	136	Mix colored beads, 100780, Accu-Glass Prod. Inc.
116	Full LMFE t	137	White beads, 100780, Accu-Glass Products Inc.
117	Full LMFE t	138	Green beads, 100780, Accu-Glass Products Inc.
		139	Black bead leachate
	Miscellaneou	140	Blue bead leachate
118	Precision Ure	141	Brown bead leachate
		142	Green bead leachate
		143	Grey bead leachate

* 什么是无双实验; 为什么要做无双实验?

* 有效中微子质量计算

* 无双实验的挑战: 信号大小与本底来源

* 如何测量材料放射性?

实验观测的实际困难,提出相应的可能解决方案。

习题2: 无中微子双贝塔衰变实验的技术核心是测量MeV能量电子。除了课堂讲 授的常见测量手段,思考一种新颖的电子测量方法,论证其可能的优点和挑战。

无双实验题目

习题1:双中微子双贝塔衰变(DBD)目标核素众多,但是发现DBD的核素仅有 10种左右, 热门核素仅仅有数个。调研3个尚未实验确认DBD的目标核素, 给出

All plots are from corresponding collaborations