# Cut based PID

--Zhen Wang

1

# Motivation

- MC has large discrepancy with data so the ML-based PID would not work.
- Can develop a set of cut-based PID tool to select mini pure samples.













![](_page_7_Figure_1.jpeg)

### Test Beam data distribution

Electron and pion showers have the largest similarity.

#### 2023/3/15

# Shower Density

![](_page_8_Figure_1.jpeg)

![](_page_8_Picture_2.jpeg)

Density : 12

Density : 11.97

### Possibly electron showers

![](_page_8_Picture_6.jpeg)

Density : 4.95

### Possibly pion showers

### 2023/3/15

### Shower density

![](_page_9_Figure_2.jpeg)

Density is calculated by counting the number of hit cells within the 3x3x3 range of each hit.

$$Density = \frac{\sum_{i=1}^{i=N_{hit}} N_i}{N_{hit}}$$

As expected, muons have smallest density. EM shower density is the largest.

### 30GeV

![](_page_10_Figure_1.jpeg)

Electron should be the second peak at 13

40GeV & 50 GeV

![](_page_11_Figure_1.jpeg)

### 2023/3/15

![](_page_12_Figure_1.jpeg)

### 60GeV & 70 GeV

### 80GeV & 100 GeV

![](_page_13_Figure_2.jpeg)

14

### 2023/3/15

![](_page_14_Figure_1.jpeg)

## 10GeV & 120 GeV

### Conclusion

- Muons could be easily picked out
- Cut on shower density at 10 could be used to select pure electron samples.
- Could be used to select samples for more energy points