# **BDT-based PIDTool**

--<u>Zhen Wang</u>, Jiyuan Chen

1

#### Pure samples

- Provided by Xin Xia.
- Clear signs of distinguishing power

FDV2 vs Sum(En)/#.hits





2023/3/22



#### Pure test beam samples are used here.

2023/3/22



Shower radius:

Between the shower start layer and end layers, the radius could be calculated as the RMS of  $r = \sqrt{\{x^2 + y^2\}}$ , x and y are position for each hit in the events.

Pure test beam samples are used here.

2023/3/22

Conclusion:

Clear single-feature distribution

No more double peaks





#### MultiClass BDTG









Conclusion:

Multiclass BDTG could be powerful in distinguishing different

showers

Can be used to tag all of the samples

#### Application of Multiclass BDTG



BDTG Scores in corresponding samples

| BDT_e_plus  | root [2] Calib_H          | lit→Show(0)                 |
|-------------|---------------------------|-----------------------------|
| BDT_mu_plus | BDT_pi_plus               | = 7.25975e-05               |
| BDT_pi_plus | BDT_e_plus<br>BDT_mu_plus | = 0.999927<br>= 1.16402e-16 |

After tagging, three extra branches are added in the tree demonstrating the possibility for the shower to be all three particles.

Different showers could be distinguished from the others 2023/3/22

#### Plans

- Extra cuts could be applied on shower density to remove empty(noise) events
- Currently only mono-energy samples are obtained. Need samples for more energy points.
- Could be used to tag all of the test beam samples
- Extra information could be used for downstream analysis.

## Backup

#### Shower Radius

- Since the directions of the incident particles are **perpendicular to the surface of HCAL**, we can use a very simple definition of "**shower radius**."
- Definition: For each event, the layers where the shower **begins** and **ends** should be defined at first. Between them, we obtain the *x* and *y* values of the hits, and calculate  $r = \sqrt{x^2 + y^2}$  for each of them; using all of the *r* values,  $r_{\rm RMS}$  can be calculated.

#### **Results from Simulation**

• These three kinds of particles in our simulation samples can be very well distinguished.

