## TriggerID Alignment

Siyuan SONG, Francois Lagarde

#### Content

A. Brief Introduction.

B. Preliminary findings.

C. Strange patterns we notice in ECAL TriggerID.

### Motivation

- 1. Find TriggerID mis-match patterns.
- 2. Provide debug hints for electronics part colleagues.
- 3. Align the collected data (Bonus).

### Strategy

- 1. Find muon-like tracks both in e+,  $\pi^+$  Run files of ECAL and AHCAL.
- 2. Collect related TriggerIDs separately.
- 3. Discover shift patterns in these TriggerIDs.

### Find Muon-like Tracks

- A. In the first stage, we would bypass Fancy PID (Quick Selection).
- **B.** Three criteria:
  - 1. Not Shower: fired cells < 5 (tunable) in each layer.
  - 2. (Fired cells / Fired Layers ) < 1.2 (tunable)
  - 3. Fired layers > 0.8 (tunable) \* total layers. (ECAL 32, AHCAL 40).

```
if notshower and (cells_fired / layers_fired < 1.2) and (layers_fired > (0.8 * layer_num)):
    trigger_ID_picked.append(trigger_ID[i])
```

#### SJTU AHCAL Simulation

• Include -  $\mu^+$ : 160 GeV,  $e^+$ ,  $\pi^+$ : 20-120 GeV







**Not shower** 

Cells fired number / Layers fired number

Layers fired

### Algorithm

- **♦**We collected ECAL and AHCAL TriggerIDs representing muon-like track separately.
- **♦**We calculated all the combinations of the TriggerID shift:
- lacktriangle  $ECAL_{TriggerID} AHCAL_{TriggerID}$
- ♦If there is a shift value appearing most, a constant shift dominates.

#### Run files checked in this talk

| Run #   | Type       |
|---------|------------|
| Run 225 | e+ 20GeV   |
| Run 233 | e+ 40GeV   |
| Run 235 | e+ 40GeV   |
| Run 250 | e+ 50GeV   |
| Run 258 | pi+ 30GeV  |
| Run 265 | pi+ 50GeV  |
| Run 280 | Pi+ 100GeV |
| Run 290 | e+ 100GeV  |

ECAL: /cefs/higgs/wangjx/ScECAL/Result\_Diagnose/decode

AHCAL: /cefs/higgs/shiyk/Beam\_2022/DataBase/Calib/Particle

Results for all Run files checked: /cefs/higgs/siyuansong/Syn/Fig

## Preliminary Findings







**Shift = 1 dominates.** 

# Preliminary Findings

Check shit from -100 to 100, calculate coincidence number.







**Shift = 1 dominates.** 

# Preliminary Findings



Reasoning in the next page.

Although Shift = 1 dominates, shapes seem strange.

### Reasoning

 $ECAL_{TriggerID}$  Picked Number <<  $AHCAL_{TriggerID}$  Picked Number

1 ECAL: 467

2 AHCAL: 20233

I dropped ECAL TriggerIDs much larger than AHCAL TriggerIDs

ECAL TriggerIDs sometimes become extremely large

# Abnormal ECAL TriggerID



ECAL TriggerIDs in Run 225 look acceptable, but in Run 265, they increase quickly.

## Abnormal ECAL TriggerID







### Conclusion

- A.Shift=1 dominates in all files I randomly selected, consistent with findings using EventDisplay in December.
- B.ECAL TriggerIDs are abnormal in many Run files.
- C.I understand algorithm when decoding .dat files leads to these extremely large ECAL TriggerIDs, so errors root in .dat files, and this might cause TriggerID mis-match.
- D.Electronics part colleagues would help a lot if they take these hints and check .dat files and TLU codes.

#### SJTU AHCAL Simulation

| Particle\E<br>(GeV) | 20  | 30  | 40  | 50  | 60  | 70  | 80  | 90  | 100 | 120 | 160  | Total | Finished |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|----------|
| mu+                 |     |     |     |     |     |     |     |     |     |     | 100k | 100k  | 100k     |
| e+                  | 10k |      | 100k  | 100k     |
| pion+               | 10k |      | 100k  | 100k     |

