Polarized ³He for NOPTREX

Jupiter Zhang

CSNS

PN Group

Contents

- **1. Introduction**
- 2. Development of Polarizing ³He
- 3. ³He Transmission Experiment at Back-n
- 4. Conclusion and Outlook

1. Introduction

Polarize ³He By SEOP Method Spin Filter

Including system:

Air heating Rb/K/³He filled filter High power pumping laser Magnetic field

••••

Advantages:

High Pressure ³He Beamline Accessible Spin Reversible Pre-pumping Polarization Stable

1. Introduction

Neutron Polarization VS ³He Polarization

The relation ship of Neutron polarization and ³He polarization

For a certain spin filter:

- The higher the ³He polarization the higher polarization of neutron
- The higher the ³He polarization the weaker transmission of neutron
- The higher the neutron energy the smaller the cross-section to ³He

Our goal are higher ³He polarization and higher neutron polarization

SEOP ³He spin filter development capability

In-house ³He cell fabrication

Attach Strings and Clean

Heating and Filling

Off-situ ³He Pumping Station

Functions:

- > High Temperature
- High Power Laser > Uniform Magnetic Field > NMR Monitoring
- Temperature Magn control Power Ontics Chille

First Generation Design

Off-situ System

- ✓ ³He polarization ≥ 77 % ✓ ³He life time ≥ 200 hrs
- ✓ Polarization of 4Å > 99%

Off-situ system

Install in the Beamline

Alinement

Examined By Neutron

Life time @Cell#3 ~ 201.42 \pm 2.32 hrs

Life time of ³He≥ 200 hrs

Off-line running

In-situ system Integrated the system together and measured online Pumping station Magnetic field Spin filter ...

³He System 2 off-situ station + 2.5 In-situ system

Pumping station: Cell selection & off-situ

In-situ system

3. ³He Transmission Experiment at BN SNS #國教教神子源 China Spallation Neutron Source

3. ³He Transmission Experiment at BN SNS 4 B & 2 4 5 16 China Spallation Neutron Source

Experiment Setup

3. ³He Transmission Experiment at BN SNS 4 B # 2 4 5 16 China Spallation Neutron Source

Pre-Experiment: off-situ

The difference between polarized ³He and unpolarized ³He is Detectable

But SNR was poor ! \rightarrow Need higher pressure and polarization of ³He Also need higher flux of neutron beam

3. ³He Transmission Experiment at BN SNS 4 B & 2 4 4 5 16 China Spallation Neutron Source

Upgrade Experiment Schedule: In-situ

3. ³He Transmission Experiment at BN SNS #國教教神子源 China Spallation Neutron Source

Upgrade Experiment: In-situ

3. ³He Transmission Experiment at BN SNS 4 B # 2 4 4 5 16 China Spallation Neutron Source

Ratio of Polarized vs Unpolarized data

Data From ²³⁵U

Data From ⁶Li

wavelength of polarized 3He wavelength of polarized 3He wavep 8621 Entries waver Mean 1.323 19445 Entries 1.313 Mean 0.6192 Std Dev Std Dev 0.6383 χ^2 / ndf 721.8 / 459 χ^2 / ndf 652.7 / 469 0.5792 ± 0.0022 p0 0.5926 ± 0.0030 58% ³He polarization was fitted 59% ³He polarization was fitted $T_{p/\overline{I}}$ 0.2 0.8 2.2 2.4 1.8 1.6 2.2 0.2 0.6 0.8 2.4 **λ** [Å] **λ** [Å]

4. Conclusion and Outlook

Problems

- 1. The polarization of ³He measured at BN is much lower than other beamline
- 2. The baseline of the proton is not very reliable
- 3. The depolarizing operation is not continuously
- 4. The data acquisition rate and statistic is not very high
- 5. The scattering length of neutron with ³He is inadequate

Conclusion

- 1. The off-situ system proved that the transmission difference for ³He is detectable
- 2. The In-situ system give a better SNR, but at high energy range, the difference still small
- 3. Higher pressure and longer length of ³He cell is better
- 4. Continuously depolarizing operation should be applied

Future plan

- 1. Insert monitor to the beam
- 2. Replace the detector with even higher efficiency
- 3. Combine two In-situ system to increase the transmission length
- 4. R&D new in-situ system

4. Outlook

³He system

Thank You!