

Hirohiko SHIMIZU (NOPTREX Collaboration)

Department of Physics, Nagoya University <u>hirohiko.shimizu@nagoya-u.jp</u>

Experimental Fact

Enhanced P-violating Effects in Compound Nuclear States induced by Epithermal Neutron Absorption

Applicability of the Enhancement Mechanism to T-violation <-> CP-violation

to deliver new physics searches in T-violation, complementary to EDM searches

(mostly in P-odd T-odd interactions)

Introduction of Neutron Fundamental Physics in Japan

Propagation of CP-violation beyond the Standard Model into Low Energy Observables

final-state interaction free

2. Enhancement dynamical and kinematical enhancement

3. New Type of New Physics Search chromo-EDM

Sketch of NOPTREX Steps

neutron polarizer

Step 1: find P-violation

Step 2: determine ϕ and W in (n, γ), spin-spin correlation

neutron polarizer/analyzer and polarized target

Step 3: measure D' (T-odd)

Sketch of NOPTREX Steps

P-violation in Compound State

Enhancement of P-violation in Compound Resonances

Mitchell, Phys. Rep. 354 (2001) 157 Shimizu, Nucl. Phys. A552 (1993) 293

N

Enhancement of P-violation

Enhancement of P-violation

Dynamical Enhancement

Ŋ

Dynamical Enhancement

Detailed Study of Entrance Channel Boundary

Detailed Study of Entrance Channel Boundary

PTREX

NÔPTREX

 $\phi = \left(99.2^{+6.3}_{-5.3}\right)^{\circ}, \ \left(161.9^{+5.3}_{-6.3}\right)^{\circ}$

T.Okudaira et al., Phys. Rev. C97 (2018) 034622

T.Yamamoto et al., Phys. Rev. C101 (2020) 062624 T.Okudaira et al., Phys. Rev. C104 (2021) 014601

T-odd → Channel-spin Interference

T-violation in Compound Nuclear States

10⁶ enhancement in compound nuclear state

B' $(\boldsymbol{\sigma}_{\mathrm{n}}\cdot \boldsymbol{\hat{I}})$ P-even T-even

 $D' \sigma_{
m n} \cdot (m{\hat{k}}_{
m n} imes m{\hat{I}})$ P-odd T-odd

10⁶ enhancement in compound nuclear state

T-violation in Compound Nuclear States

polarized neutron

10⁶ enhancement in compound nuclear state

polarized target

NOPTR

$$\underline{B'}_{\text{P-even T-even}} (\boldsymbol{\sigma}_{n} \cdot \boldsymbol{\hat{I}})$$

$$\sum_{ t P ext{-odd}} oldsymbol{\sigma}_{ ext{n}} \cdot (oldsymbol{\hat{k}}_{ ext{n}} imes oldsymbol{\hat{I}})$$

10⁶ enhancement in compound nuclear state

cs - NOPTREX'

Propagation of CP-violation beyond the Standard Model into Low Energy Observables

Present Sensitivity Estimation in Effective Field Theory

T-odd P-odd meson couplings

Y.-H.Song et al., Phys. Rev. C83 (2011) 065503 (deuteron case)

$$\begin{split} V_{\rm CP} &= \begin{bmatrix} -\frac{\bar{g}_{\eta}^{(0)}g_{\eta}}{2m_{N}}\frac{m_{\eta}^{2}}{4\pi}Y_{1}(x_{\eta}) + \frac{\bar{g}_{\omega}^{(0)}g_{\omega}}{2m_{N}}\frac{m_{\omega}^{2}}{4\pi}Y_{1}(x_{\omega}) \end{bmatrix} \boldsymbol{\sigma}_{-} \cdot \hat{\boldsymbol{r}} \\ &+ \begin{bmatrix} -\frac{\bar{g}_{\pi}^{(0)}g_{\pi}}{2m_{N}}\frac{m_{\pi}^{2}}{4\pi}Y_{1}(x_{\pi}) + \frac{\bar{g}_{\rho}^{(0)}g_{\rho}}{2m_{N}}\frac{m_{\rho}^{2}}{4\pi}Y_{1}(x_{\rho}) \end{bmatrix} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\boldsymbol{\sigma}_{-} \cdot \hat{\boldsymbol{r}} \\ &+ \begin{bmatrix} -\frac{\bar{g}_{\pi}^{(2)}g_{\pi}}{2m_{N}}\frac{m_{\pi}^{2}}{4\pi}Y_{1}(x_{\pi}) + \frac{\bar{g}_{\rho}^{(2)}g_{\rho}}{2m_{N}}\frac{m_{\rho}^{2}}{4\pi}Y_{1}(x_{\rho}) \end{bmatrix} T_{12}^{z}\boldsymbol{\sigma}_{-} \cdot \hat{\boldsymbol{r}} \\ &+ \begin{bmatrix} -\frac{\bar{g}_{\pi}^{(1)}g_{\pi}}{2m_{N}}\frac{m_{\pi}^{2}}{4\pi}Y_{1}(x_{\pi}) + \frac{\bar{g}_{\eta}^{(1)}g_{\eta}}{2m_{N}}\frac{m_{\eta}^{2}}{4\pi}Y_{1}(x_{\eta}) + \frac{\bar{g}_{\rho}^{(1)}g_{\rho}}{2m_{N}}\frac{m_{\rho}^{2}}{4\pi}Y_{1}(x_{\rho}) + \frac{\bar{g}_{\omega}^{(1)}g_{\omega}}{2m_{N}}\frac{m_{\omega}^{2}}{4\pi}Y_{1}(x_{\omega}) \end{bmatrix} \boldsymbol{\tau}_{+}\boldsymbol{\sigma}_{-} \cdot \hat{\boldsymbol{r}} \\ &+ \begin{bmatrix} -\frac{\bar{g}_{\pi}^{(1)}g_{\pi}}{2m_{N}}\frac{m_{\pi}^{2}}{4\pi}Y_{1}(x_{\pi}) - \frac{\bar{g}_{\eta}^{(1)}g_{\eta}}{2m_{N}}\frac{m_{\eta}^{2}}{4\pi}Y_{1}(x_{\eta}) - \frac{\bar{g}_{\rho}^{(1)}g_{\rho}}{2m_{N}}\frac{m_{\rho}^{2}}{4\pi}Y_{1}(x_{\rho}) + \frac{\bar{g}_{\omega}^{(1)}g_{\omega}}{2m_{N}}\frac{m_{\omega}^{2}}{4\pi}Y_{1}(x_{\omega}) \end{bmatrix} \boldsymbol{\tau}_{+}\boldsymbol{\sigma}_{+} \cdot \hat{\boldsymbol{r}} \end{split}$$

$$\sigma_{\pm} = \sigma_1 \pm \sigma_2 \quad r = r_1 - r_2 \quad x_a = m_a r$$

$$T_{12}^z = 3\tau_1^z \tau_2^z - \tau_1 \cdot \tau_2 \quad Y_1(x) = \left(1 + \frac{1}{x}\right) \frac{e^{-x}}{x}$$

$$g_{\pi} = 13.07, \quad g_{\eta} = 2.24, \quad g_{\rho} = 2.75, \quad g_{\omega} = 8.25$$

$$egin{aligned} &d_{
m n} \sim 0.14(ar{g}_{\pi}^{(0)} - ar{g}_{\pi}^{(2)}) \ &d_{
m p} \sim -0.14(ar{g}_{\pi}^{(0)} - ar{g}_{\pi}^{(2)}) \ &d_{^3
m He} \sim (-0.0542d_{
m p} + 0.868d_{
m n}) + 0.00 \ &d_{
m d} \sim 0.19ar{g}_{\pi}^{(1)} + 0.0035ar{g}_{\eta}^{(1)} + 0.0017ar{g}_{
ho}^{(1)} \ &d_{^3
m H} \sim (0.868d_{
m p} - 0.0552d_{
m n}) - 0.072 \left[ar{g}_{\pi}^{(0)} \ &d_{^3
m H} \sim (0.868d_{
m p} - 0.0552d_{
m n}) - 0.072 \left[ar{g}_{\pi}^{(0)} \ &d_{^3
m H} \sim (0.868d_{
m p} - 0.0552d_{
m n}) - 0.072 \left[ar{g}_{\pi}^{(0)} \ &d_{^3
m H} \sim (0.868d_{
m p} - 0.0552d_{
m n}) - 0.072 \left[ar{g}_{\pi}^{(0)} \ &d_{^3
m H} \sim (0.868d_{
m p} - 0.0552d_{
m n}) - 0.072 \left[ar{g}_{\pi}^{(0)} \ &d_{^3
m H} \sim (0.868d_{
m p} - 0.0552d_{
m n}) - 0.072 \left[ar{g}_{\pi}^{(0)} \ &d_{^3
m H} \sim (0.868d_{
m p} - 0.0552d_{
m n}) - 0.072 \left[ar{g}_{\pi}^{(0)} \ &d_{^3
m H} \sim (0.868d_{
m p} \ &d_{^3
m H} \ &d_{^3
m H} \sim (0.868d_{
m p} \ &d_{^3
m H} \sim (0.868d_{
m p} \ &d_{^3
m H} \ &d_{^3
m H$$

EX 2023/07/20 J-PARC PAC "Study of Discrete Symmetries in Polarized Epithermal Neutron Optics - NOPTREX" (H.M.Shimizu)

Present Sensitivity Estimation in Effective Field Theory

(Koonin, Phys. Rev. Lett. 69 (1992)1163)
$$Q \simeq 1-0.2$$

Fadeev, Phys. Rev. C 100(2019)015504

Y.H.Song et al., Phys. Rev. C83(2011) 065503

 $\left|\frac{\langle W_{\rm T} \rangle}{\langle W \rangle}\right| < 3.9 \times 10^{-4}$ ←estimated discovery potential

T-violation in Epithermal Neutron Optics

Development of Polarized Target

NÔPTREX

Development of Polarized Target

NÔPTREX

2019, 08/11 La Al O3, \$5.0 mm growth divection: <1112)cabic halogen lamp: 1kW ×4 growth speed: 10mm/h

crystal growth

measurement of spin relaxation time

09

40 80

K.Ishizaki et al., arXiv:2105.06299 (accepted NIMA) ${
m La}({
m Nd}^{3+}){
m AlO}_3~$ P.Hautle and M.linuma, Nucl. Instrum. Methods A440 (2000) 638

8WN 0.5

(Nd: 0.03mol%)

¹³⁹La ¹¹⁷Sn ¹³¹Xe ¹¹⁵In ⁸¹Br ¹³³Cs ...

106 Enhancement of P-violation in Compound Nuclear States

Interference between s- and p-waves in the entrance channel

Statistical nature of compound nuclear states

→ Reaction mechanism direct process and compound process (kinetic freedom dissipation → quantum decoherence?)

Polarized target and neutron spin control

New physics search with enhanced sensitivity to T-violation

1

Summary

Some p-wave compound resonances enhance parity-violating effects. due to dense quantum-mechanical freedom in closely-located parity-unfavored states

Enhancement of time-reversal-breaking effects is expected. (equivalent to CP-violating effects under the CPT-theorem)

Further study of P-enhancement mechanism and device development for T-violation are in progress.

NOPTREX Neutron Optical Parity and Time Reversal EXperiment

Nagoya Univ.	H.M.Shimizu, M.Kitaguchi, T.Okudaira, K.Ishizaki, I.Ide, H.Tada, H.Hotta, T.Hasegawa, Y,Ito, N.Wada, T.Matsushita		
Kyushu Univ.	T.Yoshioka, S.Takada, J.Koga		
JAEA	S.Endo, A.Kimura, H.Harada, K.Sakai, T.Oku		
Osaka Univ.	T.Shima, H.Yoshikawa, K.Ogata, H.Kohri, M.Yosoi		
Tokyo Inst. Tech.	H.Fujioka, Y.Tani, K.Kameda		
Hiroshima Univ.	M.linuma, M.Abe, S.Wada		
Yamagata Univ.	T.Iwata, Y.Miyachi, D.Miura		
Tohoku Univ.	M.Fujita, Y.Ikeda, T.Taniguchi		
KEK	T.Ino, S.Ishimoto, K.Hirota, K.Taketani, K.Mishima, G.Ichikawa		
Kyoto Univ.	K.Hagino, Y.I.Takahashi, M.Hino		
RIKEN	Y.Yamagata, T.Uesaka, K.Tateishi, H.Ikegami		
Ashikaga Univ.	D.Takahashi		
Japan Women's Un	iv. R.Ishiguro		
Univ. British Columbia T.Momose			
Kyungpook Univ.	G.N.Kim, S.W.Lee, H.J.Kim		

|--|

J.Tang, X.Tong, J.Wei, G.Y.Luan

	W.M.Sho K.Dicke J.Vande	ow, C.Auton, J.Carini, J.Curole, rson, J.Doskow, H.Lu, G.Otero, rwerp, G.Visser		
Jniv. South Carolina		V.Gudkov		
Oak Ridge Natio	nal Lab.	J.D.Bowman, S.Penttila, P.Jiang		
Jniv. Kentucky		C.Crawford, B.Plaster, H.Dhahri		
Los Alamos National Lab. D.Schaper				
Southern Illinois Univ.		B.M.Goodson		
Middle Tennessee State Univ. R.Mahurin				
Eastern Kentuck	cy Univ.	J.Fry		
Western Kentucky Univ.		I.Novikov		
JNAM L.Barron-Palos, A.Perez-Martin				
Berea College	M.Veille	ette		
PSI	P.Hautle			
NIST	C.C.Haddock			
Ohio Univ.	P.King			
Juelich	E.Babcock			
Nottingham	M.Barlow			
Depauw	A.Komives			

no Univ

KEK-BSF PEN

Nuclear Physics A552 (1993) 293-305 North-Holland

3kW spallation source

Fig. 1. Experimental arrangement of the beam line is schematically shown with the BaF₂ γ -ray counter used for the measurement of $A_{\rm L}$ in a large solid angle and $a_{\rm L,\gamma}(\theta)$. The BaF₂ crystals are arranged to detect capture γ -rays at $\theta = 55^{\circ}$, 90° and 125°. The crystals cover 85% of 4π steradians in total.