

Nuclear Data Measurement activities at CIAE

Xichao Ruan

China Nuclear Data Center China Institute of Atomic Energy (CIAE)

NOPTREX workshop July 2nd – 5th , 2023, CSNS, Dongguan, China

Contents

- Introduction
- Spectrometers and recent progress of nuclear data measurement
- Brief introduction of CARR
- Summary

Introduction

CIAE was founded in 1950, is the birthplace of China's nuclear science and technology, and the "cradle" and "old hen" of China's nuclear industry.

- 6 departments, 12 National and ministerial level laboratories;
- More than 3000 staffs.

DNP has 9 labs, about 210 staffs.

Main purpose of ND production in China

- Nuclear energy system development
 - Generation IV reactors R&D
 - CiADS(Chinese Initiative Accelerator Driven System)
 - TMSR(Thorium Molten Salt Reactor)
 - Fusion reactor
- Nuclear science study
- Nuclear technology applications

Neutron sources used for ND measurement at CIAE

- 1. HI-13 2×13 MV tandem accelerator: 5-40 MeV (DC and pulsed)
- 2. Reactor: High flux thermal neutrons
- 3. Neutron generator: 14 MeV and 2.5 MeV (DC and pulsed)
- 4. 2×1.7 MV tandem: 10 keV-5 MeV and 14-20 MeV (DC and pulsed)
- 5. 100 MeV proton Cyclotron
- 6. China Spallation Neutron Source at IHEP (CSNS)

HI-13 tandem accelerator

Three neutron beam lines designed:

- 1. Mono-energetic neutrons (70-100 MeV)
- White neutrons with 15 and 30 meters FP.

Various ND measurements are planed with these neutron beam lines

600 kV Cockcroft-Walton neutron generator

- Provide 14 and 2.5 MeV neutrons for ND measurement, detector calibration and other applications
- Provide 6.13 MeV gammas for detector calibration

> 1000 hours beam time every year for different users

lons	p and d
Current	Maximum 1 mA (DC) ~30 μA (pulsed)
Pulse width	~2 ns
Neutron yield	1011 n/s for DC14 MeV109 n/s for pulsed14 MeV109 n/s for DC2.5 MeV108 n/s for pulsed2.5 MeV

The back-streaming neutron beam of CSNS

Summary of neutron sources for ND measurement

facility	energy	intensity (1/s/sr)
Reactors	thermal	$10^{14} \text{ n/cm}^2/\text{s}$
HI-13	8-26 MeV (d+D)	10 ⁸ energe
	22-42 MeV (d+T)	molition sour
	3-6 Mey dred Nie	e neut
2×1.7MV	to hundetic, with	10 ³ 10 ⁹
on therme	Oeners, (p+Li)	108
duasi-mo	2.5, 14 MeV	10 ⁸ , 10 ¹⁰
CSNS	0.5 eV-100 MeV	10 ⁷ n/cm ² /s
Cyclotron	0.1-20 MeV	10 ¹²

Spectrometers and recent progress of ND measurement

HPGe detector for gamma spectroscopy

- Well calibrated
- Excitation function measurement
- Fission yield
 measurement
- Decay data measurement

Excitation function (94 neutron reactions, 18 charged particle reactions)

²³ Na(n,2n) ²² Na	²⁴ Mg(n,p) ²⁴ Na	²⁷ Al(n, a) ²⁴ Na	⁴⁵ Sc(n,2n) ^{44g,} Sc	⁴⁵ Sc(n,2n) ^{44m} Sc	⁴⁵ Sc(n,2n) ^{44m+g} Sc
⁴⁶ Ti(n,p) ⁴⁶ Sc	⁴⁷ Ti(n,p) ⁴⁷ Sc	⁴⁸ Ti(n,p) ⁴⁶ Sc	⁵¹ V(n,a) ⁴⁸ Sc	⁵⁵ Mn(n,2n) ⁵⁴ Mn	⁵⁴ Fe(n,p) ⁵⁴ Mn
⁵⁴ Fe(n,a) ⁵¹ Cr	⁵⁶ Fe(n,p) ⁵⁵ Mn	⁵⁹ Co(n,2n) ⁵⁸ Co	⁵⁹ Co(n,p) ⁵⁹ Fe	⁵⁹ Co(n,a) ⁵⁶ Mn	⁵⁸ Ni(n,2n) ⁵⁷ Ni
⁵⁸ Ni(n,p) ⁵⁸ Co	⁵⁸ Ni(n,x) ⁵⁷ Co	⁶⁰ Ni(n,p) ⁶⁰ Co	⁶² Ni(n,a) ⁵⁹ Co	⁶² Ni(n, a) ⁵⁹ Fe	⁶³ Cu(n,a) ⁶⁰ Co
⁶⁶ Zn(n,2n) ⁶⁵ Zn	⁶⁷ Zn(n,p) ⁶⁷ Cu	⁷⁰ Zn(n,2n) ^{69m} Zn	⁷¹ Ga(n,r) ⁷² Ga	⁸⁵ Rb(n,2n) ^{84m} Rb	⁸⁵ Rb(n,2n) ^{84m+g} Rb
⁸⁵ Rb(n,p) ^{85m} Kr	⁸⁵ Rb(n, a) ⁸² Br	⁸⁷ Rb(n,2n) ⁸⁶ Rb	⁸⁷ Rb(n,p) ⁸⁷ Kr	⁸⁹ Y(n,2n) ⁸⁸ Y	⁹⁰ Zr(n,2n) ⁸⁹ Zr
⁸⁹ Zr(n,2n) ⁸⁸ Zr	⁹⁶ Zr(n,2n) ⁹⁵ Zr	⁹² Mo(n,p) ⁹² Nb	⁹⁸ Mo(n,r) ⁹⁹ Mo	⁹³ Nb(n,2n) ^{92m} Nb	⁹³ Nb(n,a) ^{90m} Y
¹⁰⁹ Ag(n,2n) ^{108m} Ag	¹¹³ In(n,2n) ^{112m} In	¹¹³ ln(n,n') ^{113m} ln	¹¹⁵ In(n,2n) ^{114m} In	¹¹⁵ ln(n,n') ^{115m} ln	¹¹⁵ ln(n,r) ^{116m} ln
¹¹⁵ In(n,p) ¹¹⁵ Cd	¹¹⁵ In(n,a) ¹¹² Ag	¹²⁷ l(n,2n) ¹²⁶ l	¹²⁴ Xe(n,2n) ¹²³ Xe	¹³² Ba(n,2n) ¹³¹ Ba	¹³⁴ Ba(n,2n) ^{133m} Ba
¹³⁴ Ba(n,2n)1 ^{33m+g} Ba	¹³⁴ Ba(n,p) ^{134m+g} Cs	¹³⁴ Ba(n,a) ^{131m} Xe	¹³⁷ Ba(n,p) ¹³⁷ Cs	¹³⁶ Ba(n,p) ¹³⁶ Cs	¹³⁸ Ba(n,a) ¹³⁵ Xe
¹³⁶ Ce(n,2n) ¹³⁵ Ce	¹³⁸ Ce(n,2n) ^{137m} Ce	¹⁴⁰ Ce(n,2n) ¹³⁹ Ce	¹⁴⁰ Ce(n,p) ¹⁴⁰ La	¹⁴² Ce(n,2n) ¹⁴¹ Ce	¹⁵¹ Eu(n,2n) ^{150m} Eu
¹⁵¹ Eu(n,r) ^{152m} Eu	¹⁵¹ Eu(n,r) ^{152g} Eu	¹⁵³ Eu(n,2n) ^{152g} Eu	¹⁵³ Eu(n,r) ¹⁵⁴ Eu	¹⁵⁹ Tb(n,2n) ¹⁵⁸ Tb	¹⁵⁹ Tb(n,r) ¹⁶⁰ Tb
¹⁶⁵ Ho(n,r) ^{166m} Ho	¹⁶⁹ Tm(n,2n) ^{168m} Tm	¹⁶⁹ Tm(n,3n) ¹⁶⁷ Tm	¹⁶⁹ Tm(n,r) ¹⁷⁰ Tm	¹⁷⁵ Lu(n,2n) ^{174m+g} Lu	¹⁷⁶ Hf(n,2n) ¹⁷⁵ Hf
¹⁸⁰ Hf(n,r) ¹⁸¹ Hf	¹⁷⁹ Hf(n,2n) ^{178m2} Hf	¹⁸⁰ Hf(n,2n) ^{179m2} Hf	¹⁸¹ Ta(n,2n) ^{180m} Ta	¹⁸¹ Ta(n,p) ¹⁸¹ Hf	¹⁸² W(n,n'a) ^{178m2} Hf
¹⁸⁵ Re(n,2n) ^{184m} Re	¹⁸⁵ Re(n,2n) ^{184m+g} Re	¹⁸⁷ Re(n,2n) ^{186g} Re	¹⁸⁷ Re(n,2n) ^{186m} Re	¹⁹³ lr(n,2n) ^{192m2} lr	Pt(n,x) ^{195m} Pt
¹⁹⁸ Pt(n,2n) ¹⁹⁷ Pt	¹⁹⁷ Au(n.2n) ¹⁹⁶ Au	¹⁹⁷ Au(n,3n) ¹⁹⁵ Au	²⁰⁴ Pb(n,2n) ²⁰³ Pb		

⁵¹ V(d,2n) ⁵¹ Cr	⁸⁹ Y(p,n) ⁸⁹ Zr	⁸⁹ Y(p,2n) ⁸⁸ Zr	⁸⁹ Y(p,pn) ⁸⁸ Y	⁵¹ V(p,n) ⁵¹ Cr	Fe(p,x) ⁵⁷ Co
Fe(p,x) ⁵⁴ Mn	Fe(p,x) ⁵⁵ Co	Fe(p,x)⁵6Co	²⁷ Al(d,pa) ²⁴ Na	Ti(p,x) ⁴⁸ V	Ti(d <i>,</i> x) ⁴⁸ V
Mo(p,x) ^{95m,g} Tc	Mo(p,x) ^{96g} Tc	Mo(p,x) ⁹⁹ Mo	Mo(d,x) ^{95m,g} Tc	Mo(d,x) ^{96g} Tc	Mo(d,x) ⁹⁹ Mo

Excitation function measurement

69Ga(n,2n)68Ga cross section measurement

Method: activation Neutron source: d-T reaction, 14.1 and 14.9 MeV Measurement: HPGe detector Findings: the 511 keV gammas can't be used, the branching ratio of 68Ga decay should be re-evaluated Evaluation: New evaluation has been proposed

Energy of Neutron (MeV)

Fission yields

Nuclei	En	FY	Method
U-238	Fission spectrum, 3, 5, 8, 14MeV	⁹⁵ Zr, ⁹⁹ Mo, ¹⁴⁰ Ba, ¹⁴⁷ Nd etc.	RC, γ
U-235	Thermal, 0.5, 1, 1.5, 3, 5, 8, 14MeV	⁹⁵ Zr, ⁹⁹ Mo, ¹⁴⁰ Ba, ¹⁴⁷ Nd etc.	Γ
U-235, 238	Thermal, 3, 14MeV	^{85m,87,88} Kr, ^{135,138} Xe etc. (gas yield)	γ
Th-232	14 MeV	⁹⁵ Zr, ⁹⁹ Mo, ¹⁴⁰ Ba, ¹⁴⁷ Nd etc.	γ
U-235,Pu-239	Thermal	⁹⁵ Y, ¹³⁸ Cs, ¹⁰¹ Mo, ¹⁴² La etc. (short life nuclei)	RC, γ

Fission yields measurement

The fission yields of ²³⁵U at 3 MeV, 14 MeV and ²⁵²Cf spontaneous fission neutrons, ²³²Th at 14 MeV neutrons were measured.

Combined with our previous measurements, the energy dependent fission yields were studied with a systematic method.

The fission yields for some products deviate from a linear function more than 10%.

Fast neutron Time-of-Flight spectrometers (HI-13 Tandem)

Composed of Normal and Abnormal fast neutron TOF spectrometers

 Mainly for fast neutron spectrum measurement, ND measurement(DX and DDX), basic science research, detector calibration and other applications

• Combined with the 5-40 MeV neutrons produced by the HI-13 Tandem accelerator.

Secondary neutron DX and DDX measurement

With the Normal and Abnormal fast neutron TOF spectrometer and the deuterium and tritium gas target. Many of the secondary neutron DX and DDX data were measured.

En	Samples		
14 MeV	C, ²³⁸ U, D, ²⁰⁹ Bi, ^{6,7} Li, Zr,		
	Al		
6 MeV	Be		
8 MeV	^{6,7} Li, Fe, Be, D		
10 MeV	^{6,7} Li, Be, V, ²³⁸ U, ²⁰⁹ Bi, Fe, C		
20-40	Be, C, ²⁰⁹ Bi		

The abnormal TOF spectrometer was used to eliminate the influence from the breakup source neutrons between 8 and 14 MeV 21

Secondary neutron DX and DDX measurement

Nuclear data integral experimental setup at CIAE

The collimator system

List of measured samples

Sample	Sample size/cm	Sample thickness/cm	Angle/°	Institute
²³⁸ U	10×10	5	45、135	
Ве	10×10	5、11	60、12 0	
^{nat} Fe	10×10	5、10	60、12 0	
Nb	10×10	5、10	60、12 0	CIAE
H ₂ O	Ф13	5.2	60	
PE	Ф13	6	60	
	10×10	5	45	
Pb	Ф13	5	60	CIAE INEST
Pb-Bi	Ф13	5	60	CIAE-IINEST
ThO ₂	Ф13	5.4、10.8	60、12 0	CIAE-SINAP

Collaboration between CIAE-IMP for ADS purpose

sample	dimension	Angle
Polyethylene	10cm*10cm*5cm	60
Gallium	10cm*10cm*5cm, 10cm*10cm*10cm,	60,120
	Ø13cm*3.2cm, Ø13cm*6.4cm	
Tungsten(block)	$10 \text{cm} \times 10 \text{cm} \times 3.6 \text{cm}, 10 \text{cm} \times 10 \text{cm} \times 7.2 \text{cm}$	60,120
Tungsten(Granular)	9.8*9.9*7.2cm, (granular diameter:1mm)	60
Graphite	Φ13*2cm, Φ13*20cm	60,120
SiC	Φ13*2cm, Φ13*20cm	60,120
238U	10cm*10cm*2cm,	60
238U	10cm*10cm*5cm, 10cm*10cm*11cm	
W+U	W+U W:10cm*10cm*3.5cm , U: 10cm*10cm*2cm	
W+U+C	+U+C W:10cm*10cm*3.5cm, U: 10cm*10cm*2cm	
	C: 10cm*10cm*2cm	
W+U+C+CH2	W:10cm*10cm*3.5cm, U: 10cm*10cm*2cm	60
	C: 10cm*10cm*2cm, CH2: 10cm*10cm*2cm	
U+C	U: 10cm*10cm*5cm, C: 10cm*10cm*10cm	60
U+C+CH2	U: 10cm*10cm*5cm, C: 10cm*10cm*10cm	60
	CH2: 10cm*10cm*10 cm	20

14MeV n + Polyethylene, Graphite, SiC

HPGe detector array for high resolution gamma spectroscopy

6 Clover and 6 HPGe detectors
Mainly used for (n,2nγ) and (n,n'γ) measurement

Gamma production CS measurement

^{nat}Fe(n,n' γ) and ^{235,238}U(n,2n γ) have been carried out

The measured results for $^{238}U(n,n'\gamma)$

(n,2n) measurement with HeSAN

HeSAN (氦-3): He-3 SphericAl Neutron Detector Array

110 He-3 counters uniformly distributed in a spherical PE moderator

- Insensitive to gamma rays
- Detection efficiency acceptable (~33% for 252Cf source)
- Spherical design makes the efficiency more independent on energy

Experimental setup:

First measurement on 93Nb(n,2n) shows HeSAN work well

(n,g) reaction cross section measurement with C6D6 system at CSNS Back-n

Gamma Total Absorption Facility(GTAF) for neutron capture cross section measurement

• Composed of 42 BaF₂ detectors

- Readout by FADC
- Will be installed at CSNS for (n,g) measurement in 2019

Measurements performed at Back-n

- Neutron capture
 - C₆D₆: ¹⁶⁹Tm, ¹⁹⁷Au, ⁵⁷Fe, ^{nat}Se, ⁸⁹Y, ^{nat}Er/¹⁶²Er, ²³²Th, ²³⁸U, ⁹³Nb, ^{nat}Cu, ^{nat}Lu, ^{113&115}In, ^{185&187}Re, ¹⁸¹Ta, ^{107&109}Ag, ¹⁶⁵Ho
 - GTAF-II: ¹⁶⁹Tm, ⁹³Nb
- Total cross-section
 - ¹²C, ²⁷Al, ⁹Be, ⁷Li, ^{nat}Fe
- Fission cross-section
 - ²³⁵U, ²³⁸U, ²³⁶U, ²³⁹Pu, ²³²Th, ²³⁹Pu
- Light charged particle emission
 - LPDA: ⁶Li(n, x), ¹⁰B(n, x), ⁶³Ni, (n-d), ¹⁷O, (n-p)弹散
 - TPC样机: ¹²C, ¹⁴N, ¹²C (¹³C集团结构)
- Inelastic cross-section (in-beam gamma)
 - ⁵⁶Fe (n, n'), ^{nat}Mo, ¹⁶O, ^{nat}Ru, ^{nat}Lu, ^{nat}Mo, ^{nat}Ti, ²⁰⁹Bi, ⁹⁰Zr, ⁵⁵Cr, ¹⁵⁵Eu, ¹⁷⁸Hf, ²³²Th

CARR ISOL for decay data measurement

Mass resolution> 400

 For short life decay data measurement

Brief introduction of CARR

China Advaned Research Reactor(CARR)

- 60 MW, reach full power in 2012
- Max flux: 1.0×10¹⁵ n/s/cm²
- 19.75 wt% U²³⁵
- Horizontal tube 9
- Veritical tube 25

Multipurpose:

- Neutron scattering & imaging
- Neutron activation analysis
- Silicon doping
- Radio-isotope production
- Irradiation test of materials
- Nuclear data

CARR Neutron Facilities

Neutron Instruments at CARR

Cold Neutron Imaging

-	<i>2</i>	Thermal	Cold	
	Aperture -object distance (L)	800cm, 1050cm	800cm, 1600cm	
	Aperture D (cm)	4, 3, 2, 1 and 0.5	5, 4, 2, 1 and 0.5	
	L/D	58~2000	160~1600	
	Neutron flux at sample position (max.)	4.6×10 ⁹ n•cm ⁻² s ⁻¹	7.9×10 ⁷ n•cm ⁻² s ⁻¹	
	Beam size at sample position	17cm×32cm	30cm×30cm	
	Detector system	IP and CCD		
	Design resolution	0.15mm	0.12mm	

Flexible-variable collimation Potential-large sample area

Incident Neutron Energy: 2.4 meV< Ei < 19meV

Polarizer: S-bender supermirror polarizer & 3D guide-field magnet

Sample Environment:

CCR (4K), ³He refrigerator (300mK), dilution refrigerator (30mK), magnet (9T & 12T)

Cold Neutron Spectrometers

Incident Neutron Energy: 2.4 meV< Ei < 19meV

Multi Channel Analyzer: 85-170 E-Q scanning channel, high efficiency

Sample Environment:

CCR (4K), ³He refrigerator (300mK), dilution refrigerator (30mK), magnet (9T & 12T)

Cold Neutron Spectrometers

Magnetic ordering in Superconductor

Evolution of superconductivity and antiferromagnetic order in $Ba(Fe_{0.92}, Co_{0.08}V_x)_2As_2$ *Phys. Rev. B* 101,174516(2020)

Extreme Suppression of Antiferromagnetic Order and Critical Scaling in a Two-Dimensional Random Quantum Magnet *Phys. Rev. Lett. 126,037201(2021)*

Frustrated magnetism of the triangular-lattice antiferromagnets α -CrOOH and α -CrOOD *New J. Phys. 23,033040 (2021)*

DyOCI: a rare-earth based two-dimensional van der waals material with strong magnetic anisotropy *Phys. Rev. B* 104,214410(2021)

Antiferromagnetic structure and magnetic properties of Dy₂O₂Te: an isostructural analog of the rare-earth superconductors Re₂O₂Bi *Phys. Rev. B* 105,134419(2022)

Summary

- Nuclear data needs increase in China in recent years, particularly driven by some large new nuclear energy system projects.
- Substantial progress on nuclear data measurement has been made in recent years.
- Some new facilities such as CSNS are put into operation, these facilities greatly improved the capability of the nuclear data measurement in China.

Thank you for your attention