

Introduction of GTAF

Luan Guangyuan, Zhang Qiwei, He Guozhu, Ruan Xichao; Zou Chong, Wang Xiaoyu, Luo Haotian

2023/7/4

Index

- **GTAF-II** introduce
- DAQ system
- Experiment setup in Air and Vacuum
- Sn and I experiment

Gamma Total Absorption Facility

How it works

1010000

111

How it works

When Compton scattering happens, the adjacent detectors could detect the Scattered photon, thus a better total energy resolution will achieve by the facility than a single detector.

Why is Barium Fluoride

- large density lead to a high detection efficience of gamma
- can not be easily deliquesced
- could be made big with an acceptable cost

The BaF₂ arrays

Karlsruhe B+ araldite collimated neutron beam #= n pulsed proton beam Li- target sample flight path 77cm neutron collimator 4π BaF₂ detector CERN TAC

China National Nuclear Corporation

DANCE (n, y)

And GTAF

111111111

GTAF-II Barium Fluoride Array

- Belongs to CIAE, Designed to measure (n, γ) nuclear data
- 42 segments (40segments with crystals)
 - 2 different crystal shapes
 - Inner radius = 10cm
 - Crystal depth = 15cm
- Condition
 - Facility construction
 - Establishing experiment method
 - Starting physical experiments

CSNS Back-n WNS and GTAF-II

GTAF-II is located on Back-n WNS at CSNS, Target of GTAF-II is about 75.8m from the Spallation source.

Index

- GTAF-II introduce
- DAQ system
- Experiment setup in Air and Vacuum
- Sn and I experiment

Signals of BaF₂ detector

α particle from Radium impurity in BaF₂

Signals of BaF₂ detector

c)α particle

d)spike⇔

Energy resolution of Detectors

TT

Detector renewal Plan

• To solve Afterpulses and improve energy resolution

• PMT replacement will be processed in summer of 2023

DAQ system

- General-purpose readout electronics by University of Science and Technology of China
- Waveform acquisition
- TCM、SCM、FDM
- Double crate is used
- New General-purpose readout electronics will be available soon

GTAF-II calibration and energy resolution

BaF2探测器单元的脉冲积分谱和能量刻度

GTAF-II energy resolution

放射源	能量分辨率/%
²² Na (0.511MeV)	20.9 ± 2.8
¹³⁷ Cs (0.662MeV)	20.2 ± 2.4
⁶⁰ Co (1.17MeV&1.33MeV)	19.6±2.2
²² Na (1.27MeV)	19.5±1.9

100000

中国原子能科学研究院GTAF-II time resolution (⁶⁰Co cascade gamma rays) 中酸機团 ENNE

GTAF-II on beam signals

COLUMN T

Data of GTAF experiment

Signal distribution

100000 77

111

DAQ system

- General-purpose digital data acquisition system (GDDAQ) by Peking University
- <u>https://github.com/wuhongyi/P</u>
 <u>KUXIADAQ</u>
- Customization for BaF₂ detectors by WU HongYi
- Real-time processing, no need to record Waveform

Index

- GTAF-II introduce
- DAQ system
- Experiment setup in Air and Vacuum
- NOPTREX related experiments

Experiment in Air

111111111

a) Sample⇔

b)Upstream of GTAF-II↩

c) Downstream of GTAF-II \leftarrow

Experiment in Vacuum condition

Comparison of experiment condition

1111111

Au(n, γ) experiment

Background (n,γ) events

1111111

Neutron Absorber with vacuum conditon

Absorbers around GTAF in future(Li₂CO₃, B, Pb)

Background rejection

TTT

Background evaluation

$$C_{Sample_Net} = C_{Sample} - C_{Bk} - C_{Sample_PBg} - C_{Sample_El}$$

C_{El}、C_{Bk}、C_{PBg}表示样品散射中子本底、样品无关的束 流本底和无束流本底(TOF谱末端平本底); C_{Sample}表示实验中样品原始计数; C_{Net}表示样品减去本底后的净计数。

C、Pb主要是散射截面贡献,因此:

 $C_{C_El} = C_C - C_{Bk} - C_{C_PBg}$

使用η表示待测样品与C样品的散射中子贡献比值,则:

$$C_{Sample_Net} = C_{Sample} - C_{Bk} - C_{Sample_PBg} - \eta \cdot C_{C_El}$$

根据确认η的方法的不同,分为吸收片定量法、模拟计算扣除法、TOF-加和能二维谱扣除法三种

111

Background Simulation

- 吸收片定量法在所有能量点处 使用同一个η,也就是认为待 测样品与C样品的散射中子贡 献比值不随能量而变化;由于 不同核素激发曲线趋势不一致, 实际上η也应当随入射中子能 量有一定的变化。
- 但由于样品自吸收的影响,无
 法直接用截面计算,需要通过
 模拟确认二者的比例。
- 模拟过程中可以耦合样品尺寸、 自吸收效应、探测效率等方面 的影响

Background evaluation by Simulation

111111

中国原子能科学研究院 Result by Simulation Background evaluation 中核集团 ENNE

TOF-Total E evaluation

100000

Tm (n, γ) cross section by GTAF experiment

100000

Tm(n, γ) sigma relative to Au(n, γ) ENDF

Index

- GTAF-II introduce
- DAQ system
- Experiment setup in Air and Vacuum
- NOPTREX related experiments

Sn Experiment in 2022.3

......

No.	Neutron Absorber of Back-n	Vacuum Condition	Neutron Absorber of GTAF-II	Beam time	
1	Cd	-	-	58h	
2	Cd+Ag+Co	-	-	5h	
3	Cd	Φ55Aluminium- Alloy pipe	PE with 30% B_4C	50h	9h
4	Cd+Ag+Co	Φ55Aluminium- Alloy pipe	PE with 30% B_4C	8h	
5	Cd	Φ55Aluminium- Alloy pipe	-	15h	
6	Cd+Ag+Co	Φ55Aluminium- Alloy pipe	-	4h	
					A

Preliminary Result

100000

Preliminary Result

100000

Experiment in July 2023

- Sample : NaI crystal, La, Sn
- Beam time: ~300h

	2023/6/29	2023/6/30	2023/7/1	2023/7/2	2023/7/3	2023/7/4	2023/7/5	2023/7/6	2023/7/7	2023/7/8	2023/7/9	2023/7/10	2023/7/11	2023/7/12	2023/7/13	2023/7/14	2023/7/15
0							Pb+AgCo									Au 25mm	
1																	
2																	
3																	
4																	
5																	
6																	
7																	
8																	
9																DAO	
10					La				Sn								
11						C+AaCo		calibration				nobeam	Nal				
12																	
13							Empty+Ag	no beam									
14						С											
15		La				-									C 25mm		
16					Au+AaCo										0 201111		
17																	
18							Empty										
19							2										
20					Au												
21																	
22																	
23																	
20																	

Thanks

1010000

