Measurement of the electric dipole moment (EDM) of ¹⁷¹Yb atoms in an optical dipole trap (ODT)

Tian Xia

University of Science and Technology of China (USTC)

育天下英才 嚴濟慈調題

2023 CSNS NOPTREX workshop July 2023

Searching for EDM in three different categories

PSI, US, Germany, Japan, KAIST	Neutron, proton	Quark EDM		
U of Washington PTB, Argonne, USTC CENTREX	Nuclear Schiff moment diamagnetic TIF, Hg, Xe, Ra, Yb	Quark chromo-EDM 4 fermions, 3 gluons		New physics beyond SM: SUSY <i>et al</i> .
ACME, JILA Imperial college ECNU	Electron paramagnetic molecules YbF, ThO, PbF HfF ⁺	 Electron-EDM, electron-quark force	H V N	Engel, Ramsey-Musolf, van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013)

system	Upper limit (e-cm)	method	Value in Standard model (e-cm)
Electron	1 x 10 ⁻²⁹	Molecules – beam	10 ⁻³⁸
Neutron	2 x 10 ⁻²⁶	Neutrons – bottle	10 ⁻³¹
¹⁹⁹ Hg	7 x 10 ⁻³⁰	Atoms – vapor cell	10 ⁻³⁴
¹⁷¹ Yb	This work	Atoms – trap	10 ⁻³⁴

2

The Seattle EDM Measurement

stable, high Z, groundstate ${}^{1}S_{0}$, $I = \frac{1}{2}$, high vapor pressure

$$f_{+} = \frac{2\mu B + 2dE}{h} \approx 15 \text{ Hz}$$
$$f_{-} = \frac{2\mu B - 2dE}{h} \approx 15 \text{ Hz}$$
$$|f_{+} - f_{-}| < 25 \text{ pHz}$$

The best limit on atomic EDM EDM (¹⁹⁹Hg) < 7 x 10⁻³⁰ e-cm Graner *et al.*, Phys Rev Lett (2016)

Measure EDM in an Optical Dipole Trap

M.V. Romalis and E.N. Fortson, Phys. Rev. A 59, 4547 (1999)

$$H = -\tilde{d}E = -\frac{1}{4}\alpha E_0^2$$

- Fiber laser: $\lambda = 1036$ nm, Power = 10 Watts
- Focused to 50 μm \rightarrow trap depth 60 μK

EDM in an optical dipole trap (ODT)

- v x E , Berry's phase effects suppressed
- Cold scattering suppressed between cold Fermionic atoms
- Rayleigh scat. rate ~ 10^{-1} s⁻¹ ; Raman scat. rate ~ 10^{-12} s⁻¹
- Vector light shift $\sim \mu Hz$
- Parity mixing induced shift under control
- Conclusion: possible to reach 10⁻³⁰ e cm for ¹⁹⁹Hg

¹⁷¹Yb EDM Apparatus: Trapping + Science

 $\varpi_{+} = 2\mu B + 2dE$ $\boldsymbol{\varpi}_{-} = 2\mu B - 2dE$ $\delta d = \frac{\hbar}{2E\sqrt{\tau N\varepsilon T}}$

- *E*: electric field
- τ : precession time
- *N*: atom number
- ε : spin state detection efficiency
- *T* : time of average

Spin-state detection – conventional method

Bright state: ~ 3 photons before state "demolished" Dark state: no photons, state preserved Bright state: state "demolished"

 $6s6p^{3}P_{1}$

 $6s^{2}S_{c}$

3

 σ^+

 $-\frac{1}{2}$ $+\frac{1}{2}$ $+\frac{3}{2}$

Brighter state: cycling, state preserved

 $|e;\frac{3}{2},m_F\rangle$

 $g;\frac{1}{2},m_F\rangle$

Spin-state detection by a QND method

Quantum Non-Demolition

- $\Omega_{probe} \sim 2\pi \times 70 kHz$
- Spin flip suppressed by: $\Omega_c^2/(\Gamma_e \Gamma_c) \sim 10^3$
- Need ODT to be at magic wavelength
 -- T. Zheng, M.S. Safronova *et al.*, PRA (2020)

Dark state:Bright state:no photons,cycling,state preservedstate preserved

Spin-state detection by a QND method

Quantum Non-Demolition

QND reduces measurement noise

- Photons scattered non-QND: $\bar{n} \sim 2.5$ QND: $\bar{n} \sim 23$
- ~19 dB reduction of variance

QND measurement on the spin precession of laser-trapped ¹⁷¹Yb atoms Y.A. Yang *et al.*, Phys. Rev. Applied 19, 054015 (2023)

Long spin coherence time (T₂)

- Vacuum-limited trap lifetime: 75 s
- EDM measurement precession time: 96 s
- Observed precession to: 300 s
- T_2 : (9 ± 4) x 10³ s (2.5±1.1 hr)

Systematic errors

- effects correlated with E-field flipping

Source	Error	
B-field correlations	1.00×10^{-27}	
Parity mixing	0.59×10^{-27}	
Leakage current	0.14×10^{-27}	
ODT power effect	0.09×10^{-27}	
E-squared effect	0.04×10^{-27}	
Total	1.18×10^{-27}	

Parity mixing

Parity mixing

 $\Delta \nu_{F=I+1/2} = \mp \left[\nu_{MD}^{1} (\hat{\boldsymbol{b}} \cdot \hat{\boldsymbol{\sigma}}) (\hat{\boldsymbol{\varepsilon}} \cdot \hat{\boldsymbol{\varepsilon}}_{s}) + \nu_{MD}^{2} (\hat{\boldsymbol{b}} \cdot \hat{\boldsymbol{\varepsilon}}_{s}) (\hat{\boldsymbol{\varepsilon}} \cdot \hat{\boldsymbol{\sigma}}) \right] m$

M.V. Romalis and E.N. Fortson, Phys. Rev. A 59, 4547 (1999)

$$\Delta \nu \approx -\frac{\nu_1 + \nu_2}{2} \sin(2\theta), \ (0 \le \theta < \pi)$$

T-even, P-even yet EDM-like

- ε : ac E-field of ODT
- **b** : ac B-field of ODT
- ε_{s} : Static E-field
- $\boldsymbol{\sigma}$: Quantization axis Static B-field

14

Parity mixing

 $\Delta v_{F=I\pm 1/2} = \mp \left[v_{MD}^{1} (\hat{\boldsymbol{b}} \cdot \hat{\boldsymbol{\sigma}}) (\hat{\boldsymbol{\varepsilon}} \cdot \hat{\boldsymbol{\varepsilon}}_{s}) + v_{MD}^{2} (\hat{\boldsymbol{b}} \cdot \hat{\boldsymbol{\varepsilon}}_{s}) (\hat{\boldsymbol{\varepsilon}} \cdot \hat{\boldsymbol{\sigma}}) \right] m$

M.V. Romalis and E.N. Fortson, Phys. Rev. A 59, 4547 (1999)

- Average between ODT+ and ODT-
- Residual parity mixing effect: 6×10^{-28} e cm
- Future: better k+ and k- balance in an optical cavity

¹⁷¹Yb EDM measurement results

$$\delta d = \frac{\hbar}{2E\tau\sqrt{n}}\sqrt{\frac{1}{N_a\epsilon_d} + \sigma_{\phi(\delta B)}^2}$$

E: 73 *kV/cm*

τ: 96 *s*

N: 6×10^4

 ϵ_d : ~50%

T:510 h (22 d)

$$\sigma_{\phi(\delta B)}^2 \approx 4 \times \frac{1}{N_a \epsilon_d}$$

 $d(^{171}\text{Yb}) = (-6.8 \pm 5.1_{\text{stat}} \pm 1.2_{\text{syst}}) \times 10^{-27} \text{ e cm}$

Upper limit (95%) : $|d(^{171}\text{Yb})| < 1.5 \times 10^{-26} \text{ e cm}$

Measurement of the EDM of 171 Yb atoms in an ODT T.A. Zheng *et al.*, Phys. Rev. Lett. 129, 083001 (2022)

Upper limits on Schiff moments

Diamagnetic system	²⁰⁵ Tl ¹⁹ F	¹⁹⁹ Hg	¹²⁹ Xe	²²⁵ Ra	¹⁷¹ Yb
Upper limit of EDM (E-26 e cm)	6500 [Yale-1991]	7.4×10^{-4} [U of Washington-2016]	0.14 [PTB-2019]	1400 [Argonne-2016]	1.5 [USTC-2022]
Upper limit of Schiff moment (e fm ³)* 10 ¹⁰	8.8	2.6×10^{-3}	5.2	1700	7.9
Calculation of Schiff moment (e fm ³)* 10 ⁸	1.2 $\eta_{\rm pp} - 1.4 \eta_{\rm pn}$ [Flambaum-86]	$-1.4 \eta_{\rm np}$ [Flambaum-86]	1.75 η _{np} [Flambaum-86]	$300 \eta_{n},$ 1100η [Flambaum-03, Auerbach-96]	$\sim -1.4 \eta_{np}$ [Dzuba-07]

- The first ¹⁷¹Yb EDM result contributes to constraining BSM physics: on the same order of as ¹²⁹Xe, ²²⁵Ra, ²⁰⁵Tl¹⁹F, although lagging ¹⁹⁹Hg.
- The global analysis of EDM results requires different systems with complementary sensitivities to BSM parameters, rather than ¹⁹⁹Hg alone.

Outlook #1

Upgrade: ¹⁷¹Yb EDM precision improves into E-28 e-cm

- Larger E-field
 Less B-field noise
- Longer trap lifetime

Optical cavity

E-field

- This work: 73 kV/cm, copper electrodes
- Test setup: 200 kV/cm, copper
- Other works: 500 kV/cm, niobium Ready, et al. NIM A (2021)

B-field

- This work: ~ 3 pT over 100 s, Seebeck effect due to ODT heating
- Environmental noise: ~ 1 pT, use magnetometers
- Johnson noise: ~ 0.6 pT, use co-magnetometer (¹⁷³Yb)

EDM of ²²⁵Ra enhanced and more reliably calculated

- Closely spaced parity doublet Haxton & Henley, PRL (1983)
- Large Schiff moment due to octupole deformation Auerbach, Flambaum & Spevak, PRL (1996)
- Relativistic atomic structure (²²⁵Ra / ¹⁹⁹Hg ~ 3) Dzuba, Flambaum, Ginges, Kozlov, PRA (2002)

Schiff _moment =
$$\sum_{i \neq 0} \frac{\langle \psi_0 | \hat{S}_z | \psi_i \rangle \langle \psi_i | \hat{H}_{PT} | \psi_0 \rangle}{E_0 - E_i} + c.c.$$

Enhancement Factor: EDM (²²⁵Ra) / EDM (¹⁹⁹Hg)

	Isoscalar	Isovector
Skyrme SIII	300	4000
Skyrme SkM*	300	2000
Skyrme SLy4	700	8000

Schiff moment of ²²⁵Ra, Dobaczewski, Engel, PRL (2005) Schiff moment of ¹⁹⁹Hg, Dobaczewski, Engel et al., PRC (2010)

"[Nuclear structure] calculations in Ra are almost certainly more reliable than those in Hg." – Engel, Ramsey-Musolf, van Kolck, Prog. Part. Nucl. Phys. (2013) Constraining parameters in a global EDM analysis. – Chupp, Ramsey-Musolf, arXiv1407.1064 (2014)

Outlook #2

Collaboration and Support

USTC

Z.-T. Lu, Tian Xia, Dong Sheng, Tao Zheng, Yang Yang, S.-Z. Wang

CAS Institute, Wuhan Baolong Lyu, Zhuanxian Xiong

We acknowledge support by:

- National Natural
 Science Foundation
 of China
- Chinese Academy
 of Sciences
 21

