

放射醫學研究所

基于GEM的 低放气率微腔TEPC研制

报告人:王海云

胡晨晨1, 焦玲1, 刘强1, 祁辉荣2, 张建2

1,中国医学科学院放射医学研究所

2, 中国科学院高能物理研究所

第二十一届全国核电子学与核探测技术学术年会 日期:2023年08月11日 影

一. 背景及意义

二.研究内容

- 2.1、不同结构的TEPC 对比
- 2.2、探测器腔室设计
- 2.3、内部模块与工艺处理
- 2.4、探测器组装搭建

三. 实验测试结果分析及讨论

- 3.1、密闭腔出气性测试结果
- 3.2、线能能谱测试结果
- 3.2、增益测试结果
- 3.3、 GEM TEPC与 球形TEPC性能对比

- **TEPC** (Tissue Equivalent Proportional Counters)
 - 用于高注量率、混合辐射场监测(微剂量学)
 - 载人航天飞行器、空间站中X射线暴、太阳风等大剂量事件
 - 放射治疗中高注量率辐射场监测
 - 核应急事故现场高剂量辐射照射

航天飞行器中TEPC

重离子治疗束流中TEPC

质子治疗束流中TEPC

- ➢ 传统组织等效正比计数器(TEPC)
 - 丝型腔(cm级)TEPC
 - 所需气体密度低,压力小
 - 腔室较大
 - 信号堆积

一、背景及意义

≻ 传统的组织等效正比计数器TEPC(Wired TEPC)

- 组织等效材料 (A150) + 组织等效气体 (TE-C₃H₈ or TE-CH₄)
- 测量组织等效剂量(cm尺度信号反映µm尺度剂量)
- 电子信号+离子信号(慢)
- 结构复杂(更细阳极丝<2.5µm),小灵敏体难以实现
- 球形丝室结构限制高计数率

≻ 微结构组织等效正比计数器(GEM-TEPC)

 $\rho_{\rm m} \Delta X_{\rm m} = \rho_{\rm g} \Delta X_{\rm g}$

- 主动读出,小灵敏腔体(mm级)
- 电子信号读出,死时间短、计数率高
- 相对³He等稀有气体成本低廉
- ➢ 测量依据(组织等效/气体): Bragg-Gray空腔原理, Fano定理)
- 组织/气腔中能量沉积: $E_{\rm m} = \left(\frac{1}{\rho} \cdot \frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\rm m} \rho_{\rm m} \Delta X_{\rm m}$ $E_{\rm g} = \left(\frac{1}{\rho} \cdot \frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\rm g} \rho_{\rm g} \Delta X_{\rm g}$
- 组织等效可推导:

mm级灵敏体表征µm级组织内能量沉积分布

TEPC原理图

- ▶ 1、两种不同结构的TEPC
 - 球形TEPC与平面形TEPC电场均匀性对比

电压和电场分布示意图

- 球形TEPC中阳极线的两端可以发现电场的畸变
- 增加了螺旋线后,电场的不均匀性得到了改善
- 平面GEM TEPC的电场具有良好的均匀性: 三个区域(漂移区、传输区和倍增区)分区清晰
- 各向同性辐射场中,正圆柱体和球体的E值(沉积能量期望值)相差不超过1.7%

2、腔体设计(密闭腔)

2.1闭气式/流气式腔体设计,三版设计(流气式→闭气式→闭气带支架式)
2.2接口、信号馈通(19*2航插信号端子,多芯屏蔽)
2.3级联GEM模块(双层级联实现分压)
2.4供压模块(GEM与HV双路供压,便于实验过程中电压调节)
2.5读出电路pcb板设计

流气式腔体内部细节

闭气式腔体内部细节

闭气式 (带支架) 腔体外部细节

2、腔体设计(高压及读出)

2.1闭气式/流气式腔体设计,三版设计(流气式→闭气式→闭气带支架式)
2.2接口、信号馈通(19*2航插信号端子,多芯屏蔽)
2.3级联GEM模块(双层级联实现分压)
2.4供压模块(GEM与HV双路供压,便于实验过程中电压调节)
2.5读出电路pcb板设计改进

PCB设计与信号引出头(第一版) 单路供压

PCB设计与信号引出头(最终版) 双路供压 7

3、GEM-TEPC内部材料选材与工艺处理

3.1 腔室材料(Rexolite 1422、 Rexolite 2200)

- 材料采购、加工
- 肥皂、蒸馏水去污
- 超声波洗涤
- 出气性能测试

种类 TML*(%) CV Rexolite 1422 1.95 (热固性交联苯乙烯共聚物) 1.95 Rexolite 2200 0.70	加 里的将山【			
Rexolite 1422 1.95 (热固性交联苯乙烯共聚物) 1.95 (热固性交联苯乙烯共聚物) 0.70	(%) CVCM ^{**} (%)			
Rexolite 2200 (班琼纸维递强的执用性态联 0.70	5 0.01			
【玻璃纤维增强的然间性父联 0.70 苯乙烯共聚物)	0.01			

腔室板加工完成

*TML - Total Mass Loss. **CVCM - Collected Volatile Condensable Material

吸会针到山宫会粉动业

- ▶ 腔体设计尺寸:
- 2×φ2mm,校准腔室(正圆柱腔室)
- 9×φ2mm, 阵列腔室
- φ0.5/1.0/1.5/2/4mm,对比腔室
- 无壁信号与有壁信号对比

3.2 A-150组织等效阴极材料

100um

C、Ca元素EDS测试分布

100um

二、研究内容

3、GEM-TEPC内部模块与工艺处理

3.3外部腔体:

- 真空密封; 机械强度高;
- 静电屏蔽需具有导电性;
- 高Z材料会屏蔽掉低能光子
- ▶ 选择铝制材料:
- 氢渗透率低(比不锈钢小105)
- 高度抛光
- 组织等效性好于高Z金属

铝制腔体

- 外层为Kapton 绝缘膜
- 内层导体为镀银的铜丝

真空导线

3.5真空插头(高密封性、低串扰)

- 航插气密测试
- 航插焊接

真空插头

3.6 GEM装配材料(FR-4、PTFE、PEEK、Ceramic)

- 材料采购、加工
- 肥皂、蒸馏水去污
- 超声波洗涤
- 出气性能测试

4、平面形GEM TEPC的设计组装搭建

级联GEM TEPC的不同组件

▶ 基于标准GEM的平面结构:

- 敏感区域为5×5cm²
- 工作气体: TE-C₃H₈ (C₃H₈ 54.89%, CO₂ 39.6%, N₂ 5.51%)
- 工作气压: 54.72kPa (~2µm)
- 整个探测器组成:屏蔽壳、导电阴极、绝 缘腔壁、级联GEM和读出阳极
- 探测区域:分为漂移区、传输区和倍增区
- 个区域的间隙为2mm
- 探测器的内侧装有一个²⁴¹Am的α源,放在 阴极层顶部的一个0.5毫米深的孔中
- 15个圆柱形空腔,单pad读出
- 2mm的腔体用于探测器的校准
- 3×3个直径为2毫米的圆柱形腔体用来比
 较能量沉积的一致性,或者被串联起来以
 提高探测灵敏度

GEM-TEPC工作原理图

GEM-TEPC实验测试图

- 级联的GEM TEPC由CAEN R1471ETD提供负的高电压
- 前端使用CAEN A1422A电荷敏感前置放大器,增益为90 mV/MeV
- 后端使用CAEN Hexagon数字多通道分析仪
- 从前置放大器输出的信号也可以用示波器观察。

▶ 1、密闭GEM TEPC的出气性测试结果

- 不同材料放气率随时间与温度的改变而 变化
- 在整个测试过程中,真空室持续抽真空
- 抽气3小时后,真空室以60℃的温度加 热3小时
- 真空度越低,材料的放气率越低,越适
 合在密封室中应用

Outgassing rate:

PEEK< A150< Rexolite1422<PE< FR4

- PEEK材料取代FR4基材,作为GEM膜支撑结构
- 绝缘组织等效材料Rexolite1422作为腔室室壁材料
- 可导电组织等效材料A150作为探测器阴极材料

Experimental studies of the cascaded GEM TEPC and spherical TEPC for the radiation detection in microdosimetry, JINST, 2023 12

▶ 2、线能能谱测试结果

SRIM模拟计算腔体内能量沉积

- ²⁴¹Am源:5.486 MeV(85.2%),5.443 MeV(12.8%)
- 模拟结果显示,α粒子(5.486 MeV)射程2.02mm, 在2mm漂移区能量沉积是176 keV
- 表明大部分粒子在54.72kPa下停留在第一层GEM膜内

多道能谱与线能能谱图(yd(y) v.s. y)

- 线能能谱对应的α-edge为132 keV/µm
- 一般,小于10 keV/µm为低LET粒子,大于10 keV/µm 为较高LET粒子
- TEPC可提供关于不同类型辐射的能量沉积的定量和 定性信息

▶ 3、增益测试结果

不同结构的TEPC在改变工作压力时的气体增益曲线

- > 不同工作压力下的增益曲线表明工作气压越低,气体增益越高。
- ➢ 随着工作电压的增加,基于GEM或THGEM的TEPC的增益明显增加, 而球形TEPC的增益即使在较低的气体压力下增加缓慢
- ➢ 结果表明,即使级联式GEM TEPC的工作电压相对较低,它仍然可以在适当的压力下实现高的气体增益

增益随时间的变化

- 增益稳定性测试(54.72 kPa)
- 7天(168小时)的增益一致性优于97.8%
- 4天(96小时)的相对增益变化小于1%

➤ 4、GEM TEPC与 球形TEPC参数对比

平面形GEM-TEPC与传统球形TEPC(市面现有产品)性能参数对比

TEPC structure	Planar GEM TEPC Spherical TEPC		
Chamber diameter	2mm 5.69cm		
Multiplier module	Cascaded GEM	Anode wire	
High voltage module	Double channels, negative high voltageSingle channel, positive high voltage		
Operating voltage /V	350V (V _{GEM})	600V	
Arc-over voltage/V	>400V 680V		
Gas pressure/kPa	54.72	1.97	
Working gas	TE-C3H8 (C3H8 54.89%, CO2 39.6%, N2 5.51%)		
Diameter/µm	2		
Cathode material	A-150 tissue equivalent material		

感谢各位老师 敬请批评指正

王海云 wanghaiyun@irm.cams.ac.cn

	A CONTRACTOR OF THE OWNER OF THE	Sample Kep	Join	and the second second
Batch ID:	am2 - 202209161020		Count Date:	2022-9-16 10:20:1
Group:	A		Count Minutes:	5.00
Device:	S5-XLB		Count Mode:	Simultaneous
Batch Key:	849		Operating Volts:	1410
Selected Geomet	ry Swipe/Smear	、		
Sample ID	Sample Type Alph	na <u>Unc</u>	Beta Unc	
20220916102053-A6	Unknown 34150	3.60 261.34	36480.80 85.42	

核应急中基于GEM的低放气率微腔TEPC研制

SCAPENING OF REDUCTION

- ▶ 密闭探测器现存问题:
 - 内部材料放气影响工作气体成分
 - 探测器增益恶化
 - 测量能谱发生畸变
 - 导致剂量计算发生偏差

Provent & Arts When Proventions distributions of content hasteria

用于核应急中子剂量检测的GEM-TEPC研究—

- ▶ 传统的组织等效正比计数器TEPC(Tissue Equivalent Proportional Counter)
- ▶ 测量依据(组织等效/气体): Bragg-Gray空腔原理, Fano定理
- 组织/气腔中能量沉积:

$$E_{\rm m} = \left(\frac{1}{\rho} \cdot \frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\rm m} \rho_{\rm m} \Delta X_{\rm m} \qquad E_{\rm g} = \left(\frac{1}{\rho} \cdot \frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\rm g} \rho_{\rm g} \Delta X_{\rm g}$$

• 组织等效,则质量阻止能力相同: $\left(\frac{1}{\rho} \cdot \frac{dE}{dx}\right)_{m} = \left(\frac{1}{\rho} \cdot \frac{dE}{dx}\right)_{g}$

 $\rho_{\rm m} \Delta X_{\rm m} = \rho_{\rm g} \Delta X_{\rm g}$ **cm**量级灵敏体表征µm级组织内能量沉积分布

- ▶ 微剂量测量:
- 线能 $y = \varepsilon/l$, ε -小体积元(等效组织)内能量沉积, l-小体积元弦长均值
- 传能线密度LET=E/L,E-带电粒子能量,L-粒子平均径迹长度
 传能线密度LET:非随机量,受能量截止,带电粒子沿径迹能损的平均值
 线能y:随机量,受体积元几何条件约束,径向(r)上能量沉积涨落

Anode + Helical spring

