CEPC顶点探测器研制进展

- 梁志均
- For the CEPC vertex detector prototype team
 - 中国科学院高能物理研究所

CEPC项目简介 2012年希格斯粒子发现后,中国科学家提出粒子物理发展路线:CEPC

- 100公里周长的双环正负电子对撞
- 250GeV: 大量产生希格斯粒子(4
- 在90GeV:产生Z玻色子(>4×10¹
- 在160GeV:产生W玻色子(>10⁸
- ·预计今年完成加速器TDR设计

几	
×1()6个)
2	

CEP	C Operation mode	ZH	Z	W⁺W⁻
	\sqrt{s} [GeV]	~ 240	~ 91.2	~ 160
F	Run time [years]	7	2	1
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10
CDR (30MW)	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	5.6	16	2.6
	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2 ×10 ⁷
R	un time [years]	10	2	1
Latest	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6
TDR	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	20	96	7
(50MW)	Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷

CEPC plans for **2** interaction points

ILD-like detector (3 Tesla)

Full silicon tracker concept

基于时间投影室与高颗粒度量能器的ILD-like 基于全硅径迹探测器(full-silicon) 概念 于漂移室与双读出量能器 的IDEA概念 于漂移室与4D晶体量能器的概念设计 → 4个探测器概念中都需要高精度的硅顶点探测器

4th concept

CEPC的科技部国家重点研发项目: 顶点探测器课题

参与单位	
IHEP(高能所)	Full
	V
西北工大	
山大	CMOS
南大	
华中师大/西班牙IFAE研究所	

经费:1200万 2018-2023年

CMOS chip modeling, Pixel Analog, PLL block Detector module (ladder) prototyping Data acquisition system R & D ertex detector assembly and commissioning

CMOS sensor chip: Periphery Logic, LDO

sensor chip: Bias generation, TCAD simulation Sensor test board design

Irradiation, test beam organization

CMOS sensor chip: Pixel Digital

4

CEPC顶点探测器样机项目

CMOS 图像传感器 芯片设计

Ladder readout system

探测器模块组装

顶点探测器样机整机组装

FPGA board

CMOS像素传感器芯片设计的挑战

- 现有的单片集成型CMOS 传感器芯片不能满足CEPC要求
 - ・ 像素尺寸小→ high resolution (3-5 µm)
 - ・抗辐照能力: >1 Mrad (per year)
 - 高计数率-> CEPC Z pole 高亮度运行 (40MHz 的对撞频率)

	ALPIDE	ATLAS-MAPS (MONOPIX / MALTA)	MIMOSA
Pixel size	\checkmark	Χ	\checkmark
Readout Speed	Χ	\checkmark	Χ
TID	X (?)		\checkmark

Monolithic Pixels

TaichuPix (太初) 芯片的读出架构

> 数据驱动的列基读出架构 ▶实现CPEC需要的高空间分辨与高速读出

Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic

Column-drain readout for pixel matrix

- Priority based data-driven readout
- Readout time: 50 ns for each pixel

2-level FIFO architecture

- > L1 FIFO: de-randomize the injecting charge
- >L2 FIFO: match the in/out data rate
- between core and interface

Trigger-less & Trigger mode compatible

- >Trigger-less: 3.84 Gbps data interface
- > Trigger: data coincidence by time stamp only matched event will be readout

Features standalone operation

On-chip bias generation, LDO, slow control, etc.

TaichuPix3(太初3)芯片工程批流片

- 经过三次流片实现了全功能全尺寸太初芯片
- CEPC首个全尺寸、全功能的像素探测器芯片
- 1024×512 像素,芯片尺寸: 15.9×25.7mm
 - · 25µm×25µm 像素尺寸
 - ・工艺: Towerjazz 180nm CIS process
- 晶圆级探针卡测试也验证了成品率

Wafer T212141-02E3

WaferMap

An example of wafer test result

東流测试中空间分辨率的测量

- 用6个太初3芯片研制了束流望远镜。
 - 在德国DESY进行束流测试(4-5 GeV 电子束), 1kHz rate
 - 用其中5层太初芯片作为束流望远镜
 - 其中一层为待测探测器 (DUT)
 - 空间分辨率达到4.5 µm

太初芯片组成的束流望远镜。

DUT测量位置与望远镜径迹预测位置的残差

太初芯片的空间分辨率 Vs 阈值 • 在优化芯片阈值后, 探测效率可以达到4.5 微米 • 低阈值情况下, charge sharing多, 空间分辨率提高

Less charge sharing effects in modified process with full depletion

If lowering the threshold, cluster size will be dominated by noise

0.03 0.04 0.05

探测效率与阈值的关系

- 在优化芯片阈值后, 探测效率可以达到99.4%
- Modified工艺比标准工艺探测效率稍高,由于耗尽层厚度增加

$\epsilon = \frac{N_{|x_{meas},y_{meas}-x_{pre},y_{pre}| < d}}{N_{tel}^{Tracks}}$

4% 日子耗尽层厚度增加

11

探测效率的均匀性

- 在优化芯片阈值后, 探测效率可以达到99.4% efficiency
- 在单个像素内不同位置、与像素阵列内的各像素有很好的效率均匀性

像素阵列中探测效率的均匀性

4% efficiency \$像素有很好的效率均匀性

像素阵列中探测效率的均匀性(局部放大)

	350																	100-
D V G	000	99.6	100.0	100.0	100.0	100.0	100.0	99.0	99.3	99.7	99.7	100.0	100.0	100.0	100.0	100.0		0
<u>ק</u>		99.5	99.2	99.6	100.0	98.9	100.0	99.0	99.3	99.0	99.4	100.0	100.0	99.6	99.7	100.0	_	99
$\hat{\mathbf{D}}$	320	99.5	100.0	99.6	100.0	100.0	99.7	100.0	99.7	100.0	100.0	99.7	99.7	99.6	99.1	99.5		
	520	100.0	100.0	99.2	100.0	98.8	99.6	100.0	99.4	100.0	99.4	100.0	99.7	100.0	99.7	99.7		90 I
		99.6 	99.6	99.6	99.6	99.7	99.7	99.0	99.7	100.0	100.0	99.2	99.4	99.6	99.0	100.0		97
	290	100.0	99.3	100.0	99.6	99.6	100.0	99.7	99.7	99.7	100.0	99.7	99.2	99.2	100.0	99.4		96
	200	99.1 	99.6	99.6	100.0	99.3	99.7	98.9	100.0	100.0	99.7	99.4	100.0	99.7	99.7	99.7		50
		100.0	99.6	99.6	100.0	99.3	99.7	100.0	99.7	100.0	99.1	99.7	99.7	99.2	99.7	99.7		95
	260	100.0	99.3	100.0	100.0	98.6	99.0	99.7	99.7	100.0	99.5	100.0	100.0	99.6	99.2	99.2		qл
	200	100.0	99.6	100.0	99.7	99.6	99.7	99.0	100.0	100.0	99.7	99.7	100.0	98.9	98.9	99.5		0-
		100.0	99.6	99.6	99.3	99.6	100.0	99.7	100.0	99.0	100.0	99.7	100.0	100.0	99.7	99.7		93
	230	100.0	100.0	99.6	100.0	99.6	100.0	99.1	100.0	99.7	100.0	99.7	100.0	99.3	99.1	99.7		92
	200	100.0 	100.0	99.7	100.0	100.0	100.0	99.4	99.4	99.4	100.0	99.4	99.7	99.3	99.2	100.0		01
		100.0 	99.2	99.6	99.7	100.0	99.7	99.4	100.0	99.7	98.8	100.0	99.7	99.3	99.7	99.7	_	91
	200	99.5	99.7 I	100.0	99.6	99.7 I	99.7 I	99.7	99.7 I	99.3 I	100.0	100.0	99.7 I	99.7	99.3 I	100.0		90
	-~30	00		33	30		36	60		39	90		42	20		45 aivoli	50	
														COIU		JIXel]		

探测器模块的研发

- 探测器模块=10个太初芯片 + 柔性电路板 + 支撑结构
 - 探测器模块与柔性电路板通过打线连接。
- 挑战
 - · 柔性电路板太长,在电源与CEPC需要的高速信号传输方面有挑战
 - 物质量要低,柔性板金属层少,有屏蔽等问题

Taichupix chip wire bonded on FlexPCB

> 探测器模块采用双边读出的方式 ▶ 每一边的FPGA板,读出柔性板上一边5个太初芯片 ▶ 用激光扫描实验进行单个模块的功能性 ▶ 用激光扫描探测器模块表面,每次移动50 µm ▶ →可以清楚看到激光扫描5个芯片,在太初芯片取数中留下"CEPCV"的字样 ▶ →证明探测器模块中多个太初芯片同时工作

Fundamental readout unit

Laser tests on Taichupix chip on full ladder

探测器模块的激光测试

("CEPCV" pattern by scanning laser on different chips on ladder)

G/	٩	
_	_	_

双面探测器模块 (ladder) 的组装

- CEPC顶点探测器模块是双面的
 - 正反两面分别有两个柔性板 + 碳纤维支撑结构
- 挑战:
 - 探测器模块正反两面都有打线
 - 需要专用工装

碳纤维支撑结构的设计与研制

顶点探测器样机的组装

- 筒型的顶点探测器样机组装
 - 6个双面模块,组装到顶点探测器支撑结构上
 - 共有12个柔性电路板,24个太初芯片,同时工作

顶点探测器样机的束流测试

- 顶点探测器样机在2023年4月在德国DESY进行束流测试(5-6GeV电子束)
 - 12个柔性电路板, 24个太初芯片, 同时工作
 - 电子束斑(~2×2cm)清晰可见
 - 两周取数,记录了10亿条径迹

Hit maps of 24个太初芯片在顶点探测器样机上

Layer number L3/Left

L4/Left

L4/Right

L5/ Left

L5/Right

顶点探测器样机在DESY

DESY 电子束

顶点探测器样机的束流测试 在德国DESY束流测试数据分析样机空间分辨率

- 用其中一个单层太初芯片作为待测芯片(DUT)
- 顶点探测器样机的其他层作为束流望远镜
- · 空间分辨率达到 4.9μm (Υ方向)

DUT测量位置与望远镜径迹预测位置的残差

空间分辨率 VS DUT芯片击中位置

总结与展望

- 面向CEPC顶点探测器需求,开展TaichuPix芯片研发
 - 经过三次流片实现了全功能全尺寸(25.7 mm × 15.9 mm)芯片, CEPC首个全尺寸芯片
 - · 采用单片式 CMOS 像素探测器技术
 - 像素尺寸 25 μm × 25 μm, 读出时间 50 ns/pixel
- 基于全尺寸太初芯片初步研制了束流望远镜和探测器原型样机
 - 国内首个硅顶点探测器样机
 - 在德国DESY束流实验中, 验证了其空间分辨率好于5微米, 探测效率达到99.4%

	CEPC物理要求	测试结果	
空间分辨率	3-5 µm	束流望远镜: 4.5 μm CEPC顶点探测器样机: 4.9μm	World leadin
抗辐照性能 (total ionization dose, TID)	>1 Mrad	>3 Mrad	

总结与展望(2)

- · 从2016年CEPC 概念设计报告中顶点探测器概念
- 到2023年, 组装硅顶点探测器样机

2016年CEPC 概念设计报告

CEPC硅顶点探测器样机(2023)

backup

• Taichupix3 芯片在北京同步辐射线站(12keV 同步辐照光)上辐照到3 Mrad · 辐照后,芯片性能基本不变,达到项目指标>1 Mrad

Taichupix3芯片的辐照性能 像素的阈值vs. 辐照剂量

TaichuPix-3 irradiated at Synchrotron radiation beamline (12 keV X-ray)

Air Cooling for vertex prototype

- Dedicated air cooling channel designed in prototype.
 - Measured Power Dissipation of Taichu chip: ~60 mW/cm2 (17.5 MHz clock in testbeam) ullet
 - Before turning on the fan, chip temperature can go above 41 °C. ullet
 - With air cooling, chip temperature can reduced to $25 \,^{\circ}C$ (in average) ullet
 - In good agreement to our cooling simulation
 - ullet

No visible vibration effect observed in position resolution offline analysis when turning on the fan

Test beam @ DESY

- 2nd testbeam: April 11-23 2023 DESY test beam in Germany (4-6GeV electron)
 - Vertex detector prototype testbeam
- TaichuPix Beam Telescope testbeam

2022 DESY test beam

1st testbeam: Dec 12-22 2022 DESY test beam in Germany (4-6GeV electron)

2023 DESY test beam

Carbon fiber Support structure of the ladder

- Fabricated support structure prototype of the ladder (IHEP designed)
 - 4 layer of carbon fiber, 0.12mm thick for the whole support
 - Shallow design inside ladder support to reduce material
 - 2~3 time thinner than conventional carbon fiber in China

of the ladder the ladder (IHEP designed) he whole support ce material n fiber in China

Air cooling for CEPC vertex detector

- Air cooling is baseline design for CEPC vertex detector
- Sensor Power dissipation:
 - Taichupix design : $\leq 100 \text{ mW/cm}^2$. (trigger mode), $\leq 150 \text{ mW/cm}^2$ (triggerless mode),
 - Taichupix measured result: ~60 mW/cm²(triggerless mode, 17.5MHz)
 - CEPC final goal : $\leq 50 \text{ mW/cm}^2$
- Cooling simulations of a single complete ladder with detailed FPC were done.
 - Need 2 m/s air flow to cool down the ladder

temperature 5 ℃)						
3	2	1				
5.0	30.6	43.4				
5	43.4	62.6				

Offline analysis results of first test beam

Less charge sharing effects in modified process with full depletion

 If lowering the threshold, cluster size will be dominated by noise

27

CEPC对撞机的设计指标

CEP	C Operation mode	ZH	Ζ	W⁺W⁻	ttbar
	\sqrt{s} [GeV]	~ 240	~ 91.2	~ 160	~ 360
	Run time [years]	7	2	1	_
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	
CDR (30MW)	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
R	Run time [years]	10	2	1	5
Latest	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
TDR (50MW)	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	20	96	7	1
	Event yields [2 IPs]	4×10 ⁶	4×10¹²	5×10 ⁷	5×10 ⁵

CEPC的物理

40 $[10^{34} \text{cm}^{-2} \text{s}^{-1}]$ 30 20 Ц Luminosity per 2 IPs 10 \bigcirc -10 \bigcirc 40 80

240 280 120 160 200 Center of Mass Energy [GeV]

12

29

Vertex detector prototype structure optimization

- One example of detector geometry optimization based on simulation :
 - Increase the length of the inner layer of the detector
 - To improve the impact parameter resolution for forward tracks

Spatial resolution measured by Laser tests

	Resolution	Overall erro
	(µm)	(µm)
Х	3.98	±0.23
Y	4.12	±0.25

31

Vertex detector prototype structure optimization

- Based on CEPC vertex detector conceptual design \rightarrow Three double-layer barrel detector
 - This project plan to prototype the important part of vertex detector (CDR design)
 - The cost for the full vertex detector is high (eg: ~50 M CHF for ATLAS ITk pixel detector)
 - \rightarrow Plan to build full mechanical part of the detector
 - ightarrow install a sector of ladders in prototype , not necessary to build full vertex for R & D
- Optimize the geometry based on real ASIC and electronics dimension
 - Optimize geometry based on its physics performance from simulation
 - Engineering design of prototype structure CEPC Vertex detector Conceptual design (2016)

This project Vertex detector prototype design

Vertex detector: Physics goal

- Produce a world-class vertex detector prototype
 - 空间分辨率 3~5 µm (pixel detector)
 - 抗辐照性能(>1 MRad)
- Physics motivation
 - Higgs precision measurement
 - $H \rightarrow bb$ precise vertex reconstruction
 - $H \rightarrow \mu \mu$ (precise momentum measurement)

Need tracking detector with high spatial resolution

- Main technology
 - Develop the know-how in China to build such detector ullet
 - High spatial resolution technology \rightarrow pixel detector
 - Radiation resistance technology ullet

CMOS MONOLITHIC PIXEL SENSOR

- Conventional Hybrid pixel technology at Large Hadron Collider
 - Need to bump bonding with readout ASIC
- Typical pixel size $>=50\mu$ m, much more difficult for bump bonding with smaller pixels • CMOS Monolithic pixel (CIS process) is ideal for CEPC application
 - Sensor and ASIC high integrated in one chip, easier for detector assembly
 - Can have compact structure in pixel array design. •
 - Pixel size can be reduced to 25um or below \rightarrow can achieve better spatial resolution

Monolithic Pixels

Preliminary result of impact parameter resolution

- No real interaction point or real primary vertex (PV) in testbeam setup
 - Define PV as the centre of the point in xy plane extrapolated from the up/downstream
 - Calculate the impact parameter between primary vertex and upstream/downstream tracks

Estimated Material budget for vertex detector prototype

- Estimated material budget 0.026 X0 for three double ladders vertex detector (6 layers) \bullet
 - Target for final CEPC vertex detector is 0.009 X0 (0.015% X0 per layer)
- Copper in flexible PCB are major contributions
- Plan to replace copper into Aluminum in final CEPC vertex detector ullet
- Further thinning of silicon wafer (150um \rightarrow 50um) ullet

Estimated material budget for this prototype

