基于SiPM读出的塑料闪烁光纤探测器的 精细光学响应模型

李益玥 山东大学

2023年8月10日 湖北恩施

A fiber mat of HERD FIT detector

A submodule of the Mu3e SciFi detector

塑料闪烁光纤是一种兼具粒子探测和光导功能的特殊光纤, 被广泛用于高能物理实验和辐射测量领域。

闪烁光纤具有以下几个优点:

1、高的颗粒度:用于位置测量和成像,能够实现良好的空间分辨率。 2、快速响应:闪烁光纤具有快速的响应时间,适用于高计数率的场合工作。 3、衰减长度大且有一定柔性:可以灵活制成多种形状、尺寸的探测器阵列。 4、价格便宜:闪烁光纤的主要成分是塑料闪烁体,成本低廉,可以大面积使用。

Kuraray SCSF-78MJ

闪烁光纤

Signal

 $\mathsf{V}_{\mathsf{bias}}$

https://cds.cern.ch/record/1603129/files/LHCb-TALK-2013-310.pdf

硅光电倍增器(SiPM)

光学响应模型

一、光子的产生过程

- 闪烁发光过程
- 波长位移过程
- 二、光子的传输过程
- 光导过程
- 传输衰减
- 光纤串扰
- 三、光子的探测过程
- 探测效率
- 饱和效应
- 暗计数率

光子的产生过程

闪烁发光过程 + 波长位移过程(Wavelength Shifting)

https://weblib.cern.ch/record/2140068/files/CERN-THESIS-2015-318.pdf

Ray paths projected on to transverse plane (Skew ray paths need not form a closed figure.)

Trapping Efficiency : 5.4% (only meridional ray)

光子的传输过程

7

光子的传输过程

光衰减过程

Transmission Losses in Optical Fiber			
Intrinsic	Absorption	High harmonics of CH absorption	
		Electronic transition	
	Scattering	Rayleigh scattering	
Extrinsic	Absorption	Transition metals	
		Organic contaminants	
		Absorbed water	
	Scattering	Dust and micro voids	
		Fluctuation of core diameter	
		Core-cladding boundary imperfections	

光子的传输过程

衰减长度

$$\varepsilon^{trans}(x) = F_{S}e^{-\frac{x}{\Lambda_{short}}} + (1 - F_{S})e^{-\frac{x}{\Lambda_{long}}}$$

N ₀ [104]	F_{S}	$\Lambda_{\rm short} [{ m m}]$	$\Lambda_{\text{long}}[m]$
59±0.06	0.16±0.02	0.25±0.08	6.24±0.35
55±0.02	0.15±0.01	0.30±0.03	4.83±0.10
50±0.01	0.22±0.02	0.52±0.07	3.53±0.16

光纤串扰

波剂吸收,从而造成光纤串扰。

- 光纤串扰的主要来源于紫外光子,这些光子被移波剂吸收重 发射后,有一部分满足全反射条件而传导至光纤末端被光电 探测器件探测;
- 对于可见光子,发生波长位移过程的概率很低,假设在传播 过程中没有发生散射,那么它们在近邻光纤中同样不满足全 反射条件,对探测信号贡献极小;

光子的传输过程

当带电粒子穿过光纤时,通过闪烁发光过程产生的紫外光子可能会被近邻光纤中移

THESIS-Stephan Escher-2017-331

探测效率

光子入射到SiPM表面产生电流脉冲的统计概率就是光子探测效率。探测 效率作为波长和偏置电压的函数,可以用量子效率、雪崩倍增概率和几 何填充因子的乘积来表示。

$PDE(V_{ov}, \lambda) = \varepsilon_{OE}(\lambda) \cdot \varepsilon_{Av}(V_{ov}) \cdot \varepsilon_{GF}$

- 量子效率是指光子在p-n结耗尽层产生电子空穴对的概率;
- 雪崩概率则是光生载流子发生雪崩倍增的概率;
- 几何填充因子是SiPM光敏面积与总面积的比值,由于各个像素单元相 互独立,且有电阻和电极的存在,不是所有表面区域都能探测光子;

光子的探测过程

20

饱和效应

SiPM的饱和效应是指多个光子同时入射到一个像素单元时,该像素只产生与单个光 子入射一样的响应信号。由于像素单元的数量是有限的,所以器件会呈现一个非线 性状态。考虑饱和效应后, SiPM实际探测到的光子数可以用下式进行修正。

 $N_{fired} = N_{pixel} \times$

光子的探测过程

$$(1 - e^{-\frac{N_{ph} \cdot PDE}{N_{pixel}}})$$

光子的探测过程

暗计数率

SiPM 的暗计数是指光敏区内由热激发的载流子发生雪崩倍增效应产生的,并且同单光子 信号具有相同幅度的信号, 暗计数率用于表征该信号的频率。暗计数率是限制 SiPM 性能 和微元尺寸大小的主要因素。

https://doi.org/10.1016/j.nima.2018.11.118

探测效率和空间分辨率

Threshold setting: $A(th_{seed}, th_{sum}, th_n) = A(2.5, 4.5, 1.5)$ Detection efficiency: 99.64%

- 基于Geant4模拟软件,建立了单根光纤的精细光学响应模型; • 在单根光纤模拟的基础上,研究了多根光纤之间的串扰问题; • 构建SiPM的响应模型, 描述了其探测效率, 饱和效应以及暗噪声等;

- 配合测试,优化探测器的响应模型;
- 模拟过程的参数化,加快模拟速度;
- 指导器件选型和探测器的研制;

总结与展望