

Institute of High Energy Physics, Chinese Academy of Sciences

## R&D Progress of the CEPC High-Granularity Crystal ECAL

#### Baohua Qi On behalf of CEPC Calorimeter Working Group

NED'2023

August 9 – 11, 2023

2023/08/10

qibh@ihep.ac.cn

#### Motivations: new detector for CEPC

- CEPC: future lepton collider
  - Higgs/Z/W bosons, BSM searches, etc.
  - Precision jet measurement
  - Particle-Flow Algorithm (PFA)
    - Different final state particles -> different detectors
    - High-granularity calorimeter: separation of showers
- New "CEPC 4<sup>th</sup> concept" detector design
  - - 5D detector: spatial + energy + time
    - Intrinsic energy resolution:  $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
  - Scintillating glass HCAL
    - High density for better boson mass resolution

NED'2023: <u>高颗粒度闪烁玻璃强子量能器的研发进展</u>





### Crystal ECAL R&D: overview

#### Design concept



- Crystals arranged to be orthogonal between layers
- Readout from two sides

#### Optimization and validation



Dedicated new reconstruction software Performance evaluation and optimization

•

#### Hardware development





• Development of crystal module(s) for beam tests



### Design concept of high-granularity crystal ECAL

• General concept

- Long crystal bar with 2 SiPMs
- Crisscrossed arrangement between layers

- A supercell of the crystal ECAL

- Key points
  - Long crystal bars instead of small crystal cubes
    - Save #channels and minimize dead materials
    - Achieve high-granularity with information from adjacent layers
  - Double-sided readout
    - Positioning potentials with timing at two sides

- Challenges
  - Difficulties in the mechanical/geometry design
  - Impact from ghost hits



Ghost hits case when 2 or more particles hit on one supercell

### Workflow of preliminary performance evaluation

- Geometry adapted from the CEPC baseline detector (SiW ECAL)
- Application and optimization of "Arbor-PFA" under CEPC Software



### PFA performance: Higgs benchmark

• Physics performance: Boson mass resolution (BMR)

Baohua Qi (IHEP), Zhiyu Zhao (TDLI/SJTU)

• Studied with 1 cm<sup>3</sup> crystal cubes



• Good performance with Arbor-PFA algorithm



### Hardware design of high-granularity crystal ECAL

- Requirements of hardware development
  - Crystal candidates: e.g. BGO (~8000 p.e./MeV, 300ns decay time)
  - SiPM candidates: large dynamic range, low cross-talk...
  - Electronics: large dynamic range, good time resolution...
- Key issues
  - Single photon resolution is incompatible with large dynamic range
    - Requirements: 0.1~10<sup>3</sup> MIPs, ~200 p.e./MIP
  - Radiation hardness, temperature stability, mechanical tolerance...







#### **Readout electronics**

NED'2023: <u>大动态范围SiPM的响应刻度</u>

#### Introduction to the first small-scale crystal module

- Motivations
  - Identify critical questions/issues on system level
    - Mechanical design, PCB and electronics...
  - Evaluate performance with TB data
  - Validation of simulation and digitization
- First  $12 \times 12 \times 12$  cm<sup>3</sup> BGO modules development
- Beam test at CERN T9 beamline
  - Muon, electron and pion data
  - Future plan: 2 modules serial arrangement







Beam test for the first module: 72 channels, double-sided readout



- 36 crystals wrapped with ESR and Al foil 3D printed
- 3D printed support structure



#### Mechanical and PCB design





- Difficulties with module development Mechanical design is unusual PCB is non-load-bearing and
  - ٠ should be decoupled

•

Module assembly is difficult •

#### Uniformity scan of BGO crystal bars

- Batch test of SIC-CAS BGO crystal bars
  - 40 crystals with ESR and Al foil wrapping
  - Scan with Cs-137 radioactive source



Zhikai Chen (USC)





- Generally good uniformity along a single bar
- Response varies among bars, 36 crystals were selected for beam tests

### Electronics and trigger scheme





#### Beam test: installation of module



#### Beam test: installation of module

Crystal ECAL Module HEP HGC Group





Thanks to the efforts of Yong, Dejing, Baohua, Zhiyu and Lijun!





#### Beam test data summary

- 10 GeV/c muon- beam: MIP response
  - High/low gain, Hold-Delay time, shaping time scans
  - ~5.5M events acquired
- 0.5~5 GeV/c electron beam: energy response
  - ~980k events
- Other data
  - Pion- data for high fluence test
  - Self-trigger of "leaked particles" form upstream
  - Temperature monitoring data



~2°C temperature change during the beam test



#### Board0 Channel1 LG MIP RooFit

#### Beam test: preliminary results

- Simulation of beam test experiments: electron events
  - Realistic module geometry
  - Upstream material, beam profile, momentum uncertainty...
- Data: calibrated channel by channel with muon- events Energy Resolution





Beam profile 1 GeV/c e-

Beam profile 4 GeV/c e-



### Summary and prospects

- First small-scale crystal module was developed, and the beam test of the module has been successfully completed!
- Preliminary performance study has been done
- Further analysis of beam data and obtained reliable results of performance reference
- The second module is in production and another beam test is scheduled
  - Electronic crosstalk should be addressed
  - Energy measurement with two modules
  - Time resolution study with long crystal bars







### Crystal ECAL: specifications

| Key Parameters         | Value/Range              | Remarks                                       |
|------------------------|--------------------------|-----------------------------------------------|
| MIP light yield        | > 200 p.e./MIP           | 8.9 MeV/MIP in 1 cm BGO                       |
| Dynamic range          | 0.1~10 <sup>3</sup> MIPs | Energy range from ~1 MeV to ~10 GeV           |
| Energy threshold       | 0.1 MIP                  | Equivalent to ~1 MeV energy deposition        |
| Timing resolution      | ~400 ps                  | Limits from G4 simulation (validation needed) |
| Crystal non-uniformity | < 1%                     | After calibration                             |
| Temperature stability  | Stable at ~0.05 Celsius  | Reference of CMS ECAL                         |
| Gap tolerance          | ~100 μm                  | TBD via module development                    |

Challenges/issues...

- Crystal size optimization, as well as realistic ECAL geometry design
- Sophisticated software for long bar crystal ECAL
- New BGO crystal with lower light output and faster decay time (collaboration with SIC-CAS)
- Limitation from SiPM dynamic range
- Radiation damage

#### EM energy resolution: light yield requirements

- Light yields: number of detected photons per MIP
- Energy resolution: need stochastic term < 3%



#### Light Yield vs Stochastic Term



Simulation: 40×40×28 supercell, BGO long bars, gaps, 1~40 GeV electrons Digitization: photon statistics, gain uncertainty, ADC error,...

- Good resolution requires
  - Moderately high light yield  $\rightarrow$  dynamic range
  - Low energy threshold → noise level

#### Key requirements

Light yield required for one crystal: ~200 p.e./MIP (1 cm BGO)

#### Cosmic-ray test: MIP response of BGO crystal

- Measurement of crystal-SiPM units
  - 16 and 40 cm BGO crystals, double-sided readout







### Reconstruction algorithm dedicated to long crystal bar ECAL

#### Particle reconstruction for long bar crystal ECAL

![](_page_20_Figure_2.jpeg)

![](_page_20_Figure_3.jpeg)

Photon reconstruction with Hough transformation

# 1150 dutter\_xy

![](_page_20_Figure_6.jpeg)

Tracking matching algorithm for crystal ECAL

- Two tracks due to ECAL tower boundary
- Reconstruction flow has already been built
- Ongoing work on hadron...

![](_page_20_Picture_11.jpeg)

NED'2023

Yang Zhang (IHEP)