

大动态范围SiPM的响应刻度

赵芷钰 (TDLI/SJTU)

CEPC Calorimeter Working Group

第二十一届全国核电子学与核探测技术学术年会

Motivation

未来高能对撞机上的高粒度晶体电磁量能器研发进展-NED2023

- Highly granular crystal electromagnetic calorimeter for CEPC:
 - EM energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - Fine segmentation: PFA capability for jets (3~4% resolution)
- Dynamic range requirement:
 - Maximum energy deposition (from Bhabha electrons): ~10GeV → ~50000 pe(1 side)
- To cover the range up to 50000 photons, SiPMs with large dynamic range are needed and also need to calibrate the relationship between input and output.

Outline

■ Measurement

- Setup
- PMT linear region selection, gain calibration, and PE number calibration by Si-PIN
- Response curve of SiPMs

■ Simulation

- A model for simulating the number of photons output by SiPM at different incident light intensities, including SiPM pixel density, PDE, crosstalk and recovery effect
- **□** Summary

Setup

- The linearity region of the PMT can be adjusted by changing its bias voltage so that it could remain linear
 - throughout the whole response interval of SiPM
 - Pico-second laser: ~40ps pulse width, 405nm wavelength
 - Beam splitter: divide the light between SiPM and PMT
 - SiPM
 - HAMAMATSU S14160-3010PS, $10\mu m$ pixel, $3 \times 3mm^2$, 89984 pixels
 - NDL EQR06 11-3030D-S, $6\mu m$ pixel, $3 \times 3mm^2$, 244720 pixels
 - PMT(HAMAMATSU R7725), Si-PIN(Thorlab): scaler

PMT Calibration

- Linear region selection: determine the linear response region for PMT at 600/500V bias voltage
- Gain calibration: connect two linear regions and make their gains in equal
- PE number calibration: QDC → NPE, SiPM calibrates PMT in weak light intensity region

Response of S14160-3010PS and EQR06

- SiPM
 - HAMAMATSU S14160-3010PS, $10\mu m$ pixel, $3 \times 3mm^2$, 89984 pixels
 - NDL EQR06 11-3030D-S, $6\mu m$ pixel, $3 \times 3mm^2$, 244720 pixels
- Picosecond laser as source, no recovery effect
- Saturation value of 3010PS is close to its pixels number. But the result of EQR06 are quite different.
 - Limit by laser power? Spot non-uniformity?

- p_0 : effective pixels number
- $p_1 \cdot \mathbf{x} : N_{photon} \cdot PDE$

Simulation Workflow

- PDE filter: the random number is smaller than PDE
- Crosstalk filter: random number smaller than crosstalk probability && at least one adjacent pixel is not in fired

MC of S14160-3010PS - w/o Recovery

- SiPM: S14160-3010PS, $3 \times 3mm^2$ sensor size, 89984 pixels, PDE=18%, Crosstalk=1%
- N_{total} : incident photon number
- N_{pixel} : pixel number
- N_{fired} : number of fired pixels (w/ saturation)
- N_{fired}^{linear} : number of fired pixels (w/o saturation)

Microcell Electronical Model

Tsung-Dao Lee Institute

- PDE and gain will decrease if the pixel is not recovered completely.
- SiPM pixel response function:

$$A(t) = (1 - e^{-\frac{t}{\tau_1}}) \cdot e^{-\frac{t}{\tau_2}}$$

- τ_1 : discharge time constant of junction capacitance (C_D), ~1ns for \$14160-3010PS
- τ_2 : recharge time constant of junction capacitance (C_D), ~22ns for S14160-3010PS
- PDE function:

MC of S14160-3010PS - w/ Recovery

- MC with recovery effect:
 - Incident time of photon comes from Geant4 optical simulation
 - S14160-3010PS, $3 \times 3mm^2$ sensor size, 89984 pixels, PDE=18%, Crosstalk=1%
- If the incident photons have a wide time distribution, SiPM is less likely to saturate.

Summary

- Develop a method to measure the dynamic range of SiPM with large pixel number.
- Build a MC model for simulating the number of photons output by SiPM at different incident light intensities, including SiPM pixel density, PDE, crosstalk and recovery effect.
- Some factors that may deviate the results of the experiment from expectations:
 - Laser power
 - Spot non-uniformity

Measurement with Laser Diode

- Driver circuit: <5ns pulse width, kHz trigger rate(by AWG), 0~30V power supply
- Laser diode: 450nm peak wavelength, 1.6W
- SiPM: EQR06 11-3030D-S, 244720 pixels / EQR15 11-3030D-S, 40000 pixels
- The width of light pulse is lagger than SiPM recovery time

