

# Development of highly granular hadronic calorimeter with glass scintillator tiles



#### 高能物理研究所

On behalf of CEPC Calorimeter Working Group

NED' 2023 August 10, 2023

#### Motivations

- Future electron-position colliders (e.g. CEPC)
  - Main physical goals: precision measurements of Higgs/Z/W bosons
  - Challenge: unprecedented jet energy resolution  $\sim 30\% / \sqrt{E(GeV)}$
- CEPC detector: highly granular calorimeter (PFA-oriented)
  - Boson Mass Resolution (BMR) ~4% in baseline design
  - Next performance goal: BMR 4%→3%
  - Dominant factors in BMR: charged hadron fragments & HCAL resolution
- New concept: glass scintillator HCAL (GS-HCAL)
  - Same as Scintillator-Steel HCAL (CDR baseline): replace plastic scintillator with glass scintillator
  - Higher density provides higher energy sampling fraction
  - Better hadronic energy resolution









#### Outline

#### • Motivations

#### • Standalone simulation of GS-HCAL

- Impact of key parameters
- Optimize design

#### • PFA performance with GS-HCAL

- Influence of key parameters on BMR
- Optimized performance

#### • Glass scintillator material R&D

- The improvement of key properties
- Beamtest of large-scale glass scintillator tiles

#### • Summary



#### **GS-HCAL** simulation setup

- **GS-HCAL** geometry ٠
  - Refer to Scintillator-Steel AHCAL (CEPC CDR baseline)
  - Replace plastic scintillator with glass scintillator
- Glass scintillator material •
  - Composition: Gd-B-Si-Ge-F-Ce<sup>3+</sup>
  - Nuclear interaction length: 23.83 cm
  - MIP response: 7 MeV/cm
- **GS-HCAL** nominal parameters •

| Total number of layers              | 40                       |  |  |
|-------------------------------------|--------------------------|--|--|
| Total nuclear<br>interaction length | 6 λ                      |  |  |
| Glass tile size                     | 40×40×10 mm <sup>3</sup> |  |  |
| Glass density                       | 6 g/cm <sup>3</sup>      |  |  |
| Readout threshold                   | 0.1 MIP                  |  |  |









# Impact of glass density to energy resolution



- Varying glass scintillator density: 3 to 8  $g/cm^3$
- Extraction of stochastic and constant terms in energy resolution



- Increasing density can improve hadronic energy resolution
- Considering constraints of light yield in glass R&D, target density set as ~6 g/cm<sup>3</sup>



## Impact of glass thickness to energy resolution



Varying glass scintillator thickness: 5 to 15 mm
Extraction of stochastic and constant terms in energy resolution



The hadronic energy resolution can be improved with thicker glass tiles, especially the stochastic term



#### PFA performance simulation setup

By Peng Hu

- Adapted from CEPCv4 baseline detector: glass scintillator/steel HCAL + Si/W ECAL
- Primaries input: 240 GeV e+e-  $\rightarrow v\bar{v}H$  (H  $\rightarrow$  gg)
- Physics performance:
  - Boson Mass Resolution (BMR): resolution of Higgs invariant mass
  - Reconstructed by Arbor-PFA
- GS-HCAL nominal parameters

| Total number of layers              | 40                       |  |  |
|-------------------------------------|--------------------------|--|--|
| Total nuclear<br>interaction length | 6 λ                      |  |  |
| Glass tile size                     | 20×20×10 mm <sup>3</sup> |  |  |
| Glass density                       | 6 g/cm <sup>3</sup>      |  |  |
| Readout threshold                   | 0.1 MIP                  |  |  |





#### Impact of density and thickness to BMR

By Peng Hu

35

30



> BMR tended to improve with larger density  $\blacktriangleright$  Glass scintillator density ~6  $g/cm^3$  is a relatively reasonable target

- Thicker glass tile is conducive to higher sampling fraction and better BMR
- Glass thickness of 10 mm will be chosen for current design



By Peng Hu



 $\succ$  BMR improved with smaller transverse size, when tile transverse size is larger than 20×20  $mm^2$ 

- > Optimal BMR can reach 3.4%, it can further improve by optimization of Arbor-PFA parameters
- Next goal: BMR ~3%



NED' 2023

# Overview of the Glass Scintillator R&D

- Glass scintillator samples produced in the past year (>200)
- Different colored boxes correspond to samples from different institutes in collaboration













2023/8/10

#### Summary of Glass Scintillator R&D

#### By the GS R&D collaboration group



Target parameter

- ➢ Gd-Al-B-Si-Ce<sup>3+</sup> glass: 6 g/cm<sup>3</sup>, 1072 ph/MeV, 460 ns
- Target: 6 g/cm<sup>3</sup>, 1000-1500 ph/MeV, 100 ns
- > Challenge
  - Improve density while keeping light yield and transmittance
  - Properties of glass scintillator become worse after enlarging
- > Optimal single properties
  - Ultra-high density tellurite glass—6.6 g/cm<sup>3</sup>
  - High light yield glass ceramic—3400 ph/MeV
  - Fast decay time glass doped  $Pr^{3+}$  100 ns
  - Large size glass—50mm×50mm×12mm



# CERN Beamtest of large-scale glass tiles

- Beamtest along with <u>CALICE-CEPC calorimeter prototypes</u>
- Major motivation: to measure the MIP response of each glass tile
- 11 glass tiles successfully measured using 10GeV mu- beams
- 1 plastic scintillator tile (reference) and 3 scintillator glass tiles in the beamline, use the first and last tile as triggers



#### **CALICE-CEPC** calorimeter prototypes





# Beamtest results of all glass tiles

|          | Size (mm³)     | Density (g/cm <sup>3</sup> ) | Т (%) | Decay time (ns) | MIP response (p.e./MIP) | Scale to 10mm thickness<br>(p.e/MIP) |
|----------|----------------|------------------------------|-------|-----------------|-------------------------|--------------------------------------|
| #1       | 33.5×27.6×5.1  | ~5.1                         | 69    | 300 (19%), 881  | 15                      | 29.4                                 |
| #1 (ESR) |                |                              |       |                 | 42                      | 82.4                                 |
| #2       | 30.2×29.5×6.6  | ~5.1                         | 61    | 114 (11%), 770  | 35                      | 53.0                                 |
| #3       | 29.9×28.1×10.2 | ~5.1                         | 70    | 90 (6%), 754    | 66                      | 64.7                                 |
| #3 (ESR) |                |                              |       |                 | 69                      | 67.6                                 |
| #4       | 37.2×35.1×5.3  | ~5.1                         | 80    | 96 (6%), 1024   | 31                      | 58.5                                 |
| #5       | 40.0×35.1×4.2  | ~5.1                         | 78    | 335 (26%), 1068 | 38                      | 90.5                                 |
| #6       | 30.3×29.8×9.4  | ~5.1                         | 55    | 134 (5%), 1132  | 67                      | 71.3                                 |
| #7       | 34.8×34.8×7.5  | ~5.1                         | 65    | 113 (27%), 394  | 60                      | 80.0                                 |
| #8       | 27.8×25.6×5.0  | ~5.1                         | 81    | 136 (23%), 933  | 41                      | 82.0                                 |
| #9       | 34.6×34.7×7.5  | ~5.1                         | 49    | 141 (12%), 771  | 69                      | 92.0                                 |
| #10      | 34.7×35.2×7.4  | ~5.1                         | 64    | 129 (10%), 819  | 74                      | 100.0                                |
| #11      | 30.5×30.0×8.7  | ~5.1                         | 81    | 153 (12%), 1085 | 73                      | 83.9                                 |



#### Summary and prospects

- GS-HCAL in standalone simulation
  - Quantify hadronic performance with single hadrons and optimize key parameters
  - Better intrinsic hadronic energy resolution
- PFA performance in full detector simulation
  - Optimization of density and cell size
  - Preliminary result: BMR can reach 3.4%
- Ongoing glass scintillator R&D activities
  - To address high density, high light yield, fast decay time and large size
  - Large-scale glass tiles of MIP response can reach 100 p.e/MIP
- Plans
  - To further improve the hadronic energy resolution: e.g. "Software compensation" technique
  - Some parameters of Arbor-PFA should be tuned for the glass scintillator HCAL
  - Scintillation process and readout digitization should be considered in simulation



Thanks !

# Backup



# Impact of tile size to energy resolution



- Varying transverse size of glass scintillator tiles:  $10 \times 10$  to  $50 \times 50$   $mm^2$
- Extraction of stochastic and constant terms in energy resolution



Transverse size of glass scintillator tiles is not the dominant factor affecting the energy resolution



# Energy linearity and resolution



- Preliminary performance comparison: AHCAL vs. GS-HCAL
- Energy linearity: GS-HCAL slightly worse than AHCAL
  - > Within ±3% range in 10-100 GeV, but with a relatively worse linearity in low energy range
- Energy resolution: GS-HCAL has a better hadronic energy resolution



# **Study on the Total NIL**



- The BMR is subjected to shower leakage and sampling fraction when varying the total nuclear interaction length of the GSHCAL
- The BMR is dominated separately by shower leakage (< 6  $\lambda$ ) and sampling fraction (> 6  $\lambda$ );
- A total NIL of 6  $\lambda$  will be chosen for current design to obtain a optimal BMR

# **Study on the Number of Layers**



- The increase of sampling layers will improve the sampling frequency and sampling fraction, which is beneficial to achieve a better BMR
- 40 sampling layers will be chosen for current design, considering the BMR improvement provided by more sampling layers is not significant and the number of readout channels is in a reasonable level